• 제목/요약/키워드: co-curing

검색결과 449건 처리시간 0.025초

Physical Properties of Cement System Insulation Using Blast Furnace Slag

  • Seo, Sung Kwan;Park, Jae Wan;Cho, Hyeong Kyu;Chu, Yong Sik
    • 한국세라믹학회지
    • /
    • 제55권1호
    • /
    • pp.61-66
    • /
    • 2018
  • In this study, fabrication method of inorganic insulation were studied to reduce $CO_2$ from buildings. Main materials for inorganic insulation were used cement, blast furnace slag and aluminum powder as foaming agent. Mixing ratio of cement and slag was controlled and physical properties of inorganic insulation were analyzed. When inorganic insulation was fabricated using cement and slag, expanded slurries were not sunken and hardened normally. Pore size was 0.5 - 2 mm; mean pore size was about 1mm in inorganic insulation. Compressive strength of inorganic insulation increased with curing time and increased slightly with cement fineness. However, specific gravity decreased slightly with curing time; this phenomenon was caused by evaporation of adsorptive water. When inorganic insulation was dried at $60^{\circ}C$, compressive strength was higher than that of undried insulation. The highest compressive strength was found with a mixture of cement (50%) and slag (30%) in inorganic insulation. Compressive strength was 0.32 MPa, thermal conductivity was 0.043 W/mK and specific gravity was $0.12g/cm^3$.

CEMHYD-3D로 예측된 수화도를 기초로 한 고성능 콘크리트의 건조수축 모델제안 (Development of Drying Shrinkage Model for HPC Based on Degree of Hydration by CEMHYD-3D Calculation Result)

  • 김재기;서종명;윤영수
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2004년도 추계 학술발표회 제16권2호
    • /
    • pp.501-504
    • /
    • 2004
  • This paper proposes degree of hydration based shrinkage prediction model of 40MPa HPC. This model shows degree of hydration which is defined as the ratio between the hydrated cement mass and the initial mass of cement is very closely related to shrinkage deformation. In this study, degree of hydration was determined by CEMHYD-3D program of NIST. Verification of the predicted degree of hydration is performed by comparison between test results of compressive strength and estimated one by CEMHYD-3D. Proposed model is determined by statistical nonlinear analysis using the program Origin of Origin Lab. Co. To get coefficients of the model, drying shrinkage tests of four specimen series were followed with basic material tests. Testes were performed in constant temperature /humidity chamber, with difference moisture curing ages to know initial curing time effect. Verification with another specimen, collected construction field of FCM bridge, was given in the same condition as pre-tested specimens. Finally, all test results were compared to propose degree of hydration based model and other code models; AASHTO, ACI, CEB-FIP, JSCE, etc.

  • PDF

우레탄계와 아크릴계 도막 방수재가 도포된 바탕 모르타르의 염해 저항성 평가 (Salt damage resistance of mortar substrate coated by the urethane and acrylic waterproofing membranes)

  • 이준;미야우치 히로유키;구경모;최경철;미야우치 카오리;김규용
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2013년도 춘계 학술논문 발표대회
    • /
    • pp.329-331
    • /
    • 2013
  • The salt damage resistance of waterproofing membrane was evaluated on the cracked mortar substrate. The types of specimens are urethane, acrylic waterproofing membrane, and no coating mortar substrate. After these specimens were cured by water curing for 4 weeks, they were cured by atmospheric curing at 20±2Co for 8 weeks. The salt water immersion test was carried out by following KS F 2737, and the penetration depth of chloride ion into substrate was measured in 1, 4, 8, and 13 weeks. As a result, in the case of non coating specimen, the chloride ion penetrated within one week. In the coated specimens, a regardless of the membrane type, the chloride ion did not penetrate during 13 weeks-tests on condition that the cracked width of substrate is less than 0.3mm. Also, the penetration speeds of the coated specimens were lower than that of non coating specimen. Therefore, our results reached a conclusion that waterproofing membrane has high salt damage resistance.

  • PDF

Experimental study on modified low liquid limit silt for abutment backfill in bridge-embankment transition section

  • Shu-jian Wang;Yong Sun;Zhen-bao Li;Kai Xiao;Wei Cui
    • Geomechanics and Engineering
    • /
    • 제32권6호
    • /
    • pp.601-613
    • /
    • 2023
  • Low liquid limit silt, widely distributed in the middle and down reaches of Yellow River, has the disadvantages of poor grading, less clay content and poor colloidal activity. It is very easy to cause vehicle jumping at the bridge-embankment transition section when the low liquid limit silt used as the backfill at the abutment back. In this paper, a series of laboratory tests were carried out to study the physical and mechanical properties of the low liquid limit silt used as back filling. Ground granulated blast furnace slag (GGBFS) was excited by active MgO and hydrated lime to solidify silt as abutment backfill. The optimum ratio of firming agent and the compaction and mechanical properties of reinforced soil were revealed through compaction test and unconfined compressive strength (UCS) test. Scanning electron microscope (SEM) test was used to study the pore characteristics and hydration products of reinforced soil. 6% hydrated lime and alkali activated slag were used to solidify silt and fill the model of subgrade respectively. The pavement settlement regulation and soil internal stress-strain regulation of subgrade with different materials under uniformly distributed load were studied by model experiment. The effect of alkali activated slag curing agent on curing silt was verified. The research results can provide technical support for highway construction in silt area of the Yellow River alluvial plain.

광·열경화형 수지를 이용한 탄소섬유 프리프레그의 물리적 특성 (Mechanical Characteristics of CF Laminated Prepreg with UV-thermal Dual Curable Epoxy Resin)

  • 심지현;김지혜;박성민;구광회;장기욱;배진석
    • 한국염색가공학회지
    • /
    • 제29권1호
    • /
    • pp.37-44
    • /
    • 2017
  • An issue of major concern in the utilization of laminated composites based epoxy resin is associated with the occurrence of delaminations or interlaminar cracks, which may be related to manufacturing defects or are induced in service by low-velocity impacts. A strong interfacial filament/brittle epoxy resin bonding can, however, be combined with the high fracture toughness of weak interfacial bonding, when the filaments are arranged to have alternate sections of shear stress. To improve this drawback of the epoxy resin, UV-thermal dual curable resin were developed. This paper presents UV-thermal dual curable resin which were prepared using epoxy acrylate oligomer, photoinitiators, a thermal-curing agent and thermoset epoxy resin. The UV curing behaviors and characteristics of UV-thermal dual curable epoxy resin were investigated using Photo-DSC, DMA and FTIR-ATR spectroscopy. The mechanical properties of UV-thermal dual curable epoxy resin impregnated CF prepreg by UV curable resin content were measured with Tensile, Flextural, ILSS and Sharpy impact test. The obtained results showed that UV curable resin content improves the epoxy toughness.

우주용 일체형 경량 복합재료 전자장비 하우징 제작에 관한 연구 (A Study on Fabrication of Monolithic Lightweight Composite Electronics Housing for Space Application)

  • 장태성;서정기;이주훈
    • 한국항공우주학회지
    • /
    • 제41권12호
    • /
    • pp.975-986
    • /
    • 2013
  • 기존 위성 전자장비 하우징에 널리 사용되는 알루미늄 합금 소재를 경량 복합재료로 대체함으로써 위성 경량화를 크게 개선하고자, 경량 복합재료로 구성된 전자장비 하우징을 제작하고 성능 검증에 대하여 다루었다. 이를 위해 복합재료의 낮은 가공성을 극복하기 위하여 후처리를 최소화할 수 있는 복합재료 하우징 제작공정을 설계하고, 격자 구조로 강화된 일체형 하우징 본체를 동시경화 방법에 의해 제작하였다. 또한 제작된 전자장비 하우징의 내구성, 강성, 열전도도, 전기전도도, EMI차폐 및 방사차폐에 대한 성능 평가 결과를 분석하였다. 아울러 본 연구에서 제작한 복합재료 하우징은, 동일한 형상의 알루미늄 하우징 대비 상당한 질량절감을 가능하게 함을 제시하였다.

시멘트 고화체내 Cs-137의 침출능에 영향을 미치는 인자에 대한 실험적 연구와 뒷채움재를 고려한 침출 모델 (An Experimental Study on Factors Affecting the Leachability of Cs-137 in Cement Matrix and Leaching Model with Backfill)

  • Park, Jong-Kil;Lee, Kun-Jai
    • Nuclear Engineering and Technology
    • /
    • 제23권4호
    • /
    • pp.374-386
    • /
    • 1991
  • 시멘트 고화체내 Cs-137의 침출에 영향을 미치는 여러 새로운 인자들에 대해 조사하였다. 조사된 인자들은 가압 상태 및 진동 상태에서의 시멘트 경화, 압력하에서의 침출, 여러 종류의 점토 첨가, 이온 교환 수지(IRN-77)의 첨가, 그리고 $CO_2$또는 공기 주입의 영향이다. 침출실험은 IAEA가 제시한 방법에 의해 수행되었고, 실험 결과를 해석하기 위해 시멘트 고화체에 대한 기공 구조를 BET방법으로 분석했다. 처분장에 처분된 고화 드럼 주위에는 뒷채움재가 채워져 있기 때문에 시멘트 고화체가 직접 지하수와 접촉할 가능성은 매우 희박하다. 그래서 뒷채움재가 침출능에 미치는 영향을 예측하였다. 잘 알려진 확산 이론을 이용하여 뒷채움재를 고려했을 때 Cs-137 또는 비방사능 물질의 장기 침출율과 누적 침출량을 예측하였다.

  • PDF

가시광선(可視光線)의 치질투과(齒質透過) 후(後) 복합(複合)레진 경도(硬度)에 미치는 영향(影響)에 관(關)한 연구(硏究) (A STUDY ON THE CURING EFFECT OF COMPOSITE RESIN BY VISIBLE LIGHT THROUGH TOOTH SUBSTANCE)

  • 방상훈;박상진;민병순;최호영
    • Restorative Dentistry and Endodontics
    • /
    • 제12권1호
    • /
    • pp.85-93
    • /
    • 1986
  • The purpose of this study was to investigate the curing effect of visible light through tooth substance, 0.5mm, 1.0mm thickness of enamel and dentin were prepared. Experimental specimen were made by Bisfil M & Silux packing into cylindrical brass mold 6.0mm in diameter, 2.0mm and 3.0mm, in height. All specimen were irradiated by visible light (Grip type) model No. SDL-50 Shofu Co.) for 30 seconds through tooth substance. Experimental groups were classified into enamel group (group 1) and dentin group (group 2) according to the thickness of tooth materials and then were divided into 2 subgroups (0.5mm group and 1.0mm group). In experimental groups, visible light irradiated to the specimen through either 0.5mm in thick or 1.0mm in think of tooth material. In Control group specimen were prepared by direct irradiation on the specimen surface of visible light without through tooth substance. The hardness was measured with a Barcol hardness tester (Barber-Colman Co. U.S.A.) for each prepared specimen. The results were as follows: 1. In control group, there were higher hardness values than those of in experimental group. 2. In experimental groups, 0.5mm groups had higher hardness values than 1.0mm groups did. 3. The hardness value at top surface of the specimen were higher than the hardness of bottom surface in each group. 4. Bisfil M had higher hardness values than Silux. 5. In all specimen of 3.0mm height polymerization effect was not occurred at bottom surface except Bisfil M in control group.

  • PDF

친환경 폴리올을 이용한 광경화형 폴리우레탄 아크릴레이트의 합성 (Syntheses and Characterization of UV-curable Polyurethane Acrylates with Eco-friendly Polyols)

  • 이봉;김영우;이원기
    • 접착 및 계면
    • /
    • 제20권4호
    • /
    • pp.140-145
    • /
    • 2019
  • 환경적 관점에서 고분자필름이나 코팅제 산업계에서 이산화탄소와 휘발성 유기화합물의 저감은 가장 중요한 이슈 중의 하나이다. 광경화 시스템은 용제를 사용치 않아 휘발성 유기화합물의 방출을 최소화 할 수 있고 빠른 경화로 인한 에너지 소모가 적은 잇점이 있다. 또한, 생분해성 고분자는 거대한 폐플라스틱의 발생을 고려하면 환경적으로 경제적으로 많은 관심을 받고 있다. 따라서 본 연구에서는 생분해성 고분자인 폴리락타이드 다이올과 폴리에틸렌 글리콜을 폴리올로하여 광경화형 폴리우레탄 아크릴레이트를 합성하였고 자외선에 의해 말단의 아크릴레이트 그룹의 경화반응을 진행하였다. 경화된 필름의 인장강도, 파단율 및 Tg는 폴리락타이드 다이올의 함량 증가와 더불어 증가하였고 친수특성과 열정안정성은 폴리에틸렌 글리콜 함량과 비례하였다. 따라서 친환경적인 폴리올의 함량 조절로 광경화 폴리우레탄 아크릴레이트의 물성이 조절 가능하였다.

수경성석회 종류에 따른 수황 및 탄산화 특성 (Hydration and Carbonation Properties of Different Hydraulic Lime)

  • 문기연;최문관;조계홍;조진상;안지환;연규석
    • 한국세라믹학회지
    • /
    • 제51권2호
    • /
    • pp.72-81
    • /
    • 2014
  • The main mineral phases of natural hydraulic lime (NHL) as a hydraulic lime binderare $Ca(OH)_2$, $C_2S$, $C_3S$, $C_3A$, and $SiO_2$ residues. Also, NHL has the characteristic of setting and hardening by a hydration reaction with water and by carbonation reactions with carbon dioxide from the air. In this study, in an effort to investigate changes of the mineral phases by NHL hydration and carbonation reactions, transitions of mineral phases and the microstructures of hardened pastes were analyzed by XRD, DSC, SEM, and by pore size distributions using domestic and foreign-sourced NHL pastes after curing at 1, 3, 7, and 28 days. On the basis of the analysis results, it was confirmed that domestic low-grade limestone can be used for the manufacturing of NHL. The main hydration mineral phases were $Ca(OH)_2$, $CaCO_3$, $C_2S$, and $SiO_2$ residues, while in the case of foreign-sourced NHL, a small amount of an aluminium hydration phase formed. Also, the $CaCO_3$ content after the carbonation reaction increased with an increase in the curing time. After hydration for 28 days, NHL containing considerable amounts of $C_2S$ and $C_3S$ showed higher carbonation ratios than others types.