Journal of Korean Institute of Industrial Engineers
/
v.40
no.1
/
pp.52-59
/
2014
We survey 3,857 journal articles published on the four domestic academic journals in the industrial engineering field during 1975~2012. Titles, abstracts, and keywords of the papers are searched by means of text mining technique to draw the information on the methodologies and techniques adopted in the papers, and then we aggregate and merge similar ones to obtain final 38 representative methodologies and techniques. Trends of these methodologies and techniques are studied by analyzing frequencies, clustering, and finding association rules among them. Results of the paper can shed a light to choose tools in the future education and research in the industrial engineering related area.
Bug report processing is a key element of bug fixing in modern software maintenance. Bug reports are not processed immediately after submission and involve several processes such as bug report deduplication and bug report triage before bug fixing is initiated; however, this method of bug fixing is very inefficient because all these processes are performed manually. Software engineers have persistently highlighted the need to automate these processes, and as a result, many automation techniques have been proposed for bug report processing; however, the accuracy of the existing methods is not satisfactory. Therefore, this study focuses on surveying to improve the accuracy of existing techniques for bug report processing. Reviews of each method proposed in this study consist of a description, used techniques, experiments, and comparison results. The results of this study indicate that research in the field of bug deduplication still lacks and therefore requires numerous studies that integrate clustering and natural language processing. This study further indicates that although all studies in the field of triage are based on machine learning, results of studies on deep learning are still insufficient.
Academic analytics guides university decision-makers to assign limited resources more effectively. Especially, diverse academic courses clustered by the usage patterns and levels on Learning Management System(LMS) help understanding instructors' pedagogical approach and the integration level of technologies. Further, the clustering results can contribute deciding proper range and levels of financial and technical supports. However, in spite of diverse analytic methodologies, clustering analysis methods often provide different results. The purpose of this study is to present implications by using three different clustering analysis including Gaussian Mixture Model, K-Means clustering, and Hierarchical clustering. As a case, we have clustered academic courses based on the usage levels and patterns of LMS in higher education using those three clustering techniques. In this study, 2,639 courses opened during 2013 fall semester in a large private university located in South Korea were analyzed with 13 observation variables that represent the characteristics of academic courses. The results of analysis show that the strengths and weakness of each clustering analysis and suggest that academic leaders and university staff should look into the usage levels and patterns of LMS with more elaborated view and take an integrated approach with different analytic methods for their strategic decision on development of LMS.
In this paper, we propose an approach to correlate alerts using a clustering analysis of data mining techniques in order to support intrusion detection system. Intrusion detection techniques are still far from perfect. Current intrusion detection systems cannot fully detect novel attacks. However, intrucsion detection techniques are still far from perfect. Current intrusion detection systems cannot fully detect novel attacks or variations of known attacks without generating a large amount of false alerts. In addition, all the current intrusion detection systems focus on low-level attacks or anomalies. Consequently, the intrusion detection systems to underatand the intrusion behind the alerts and take appropriate actions. The clustering analysis groups data objects into clusters such that objects belonging to the same cluster are similar, while those belonging to different ones are dissimilar. As using clustering technique, we can analyze alert data efficiently and extract high-level knowledgy about attacks. Namely, it is possible to classify new type of alert as well as existed. And it helps to understand logical steps and strategies behind series of attacks using sequences of clusters, and can potentially be applied to predict attacks in progress.
Abstract - In this paper, a segmentation method for brain Magnetic Resonance(MR) image using region clustering technique with statistical distribution of gradient image and fuzzy rules is described. The brain MRI consists of gray matter and white matter, cerebrospinal fluid. But due to noise, overlap, vagueness, and various parameters, segmentation of MR image is a very difficult task. We use gradient information rather than intensity directly from the MR images and find appropriate thresholds for region classification using gradient approximation, rayleigh distribution function, region clustering, and merging techniques. And then, we propose the adaptive fuzzy rules in order to extract anatomical structures and diseases from brain MR image data. The experimental results shows that the proposed segmentation algorithm given better performance than traditional segmentation techniques.
Real time transient stability assessment mainly depends on real-time prediction. Unfortunately, conventional techniques based on offline analysis are too slow and unreliable in complex power systems. Hence, fast and reliable stability prediction methods and simple stability criterions must be developed for real time purposes. In this paper, two new methods for real time determining critical clearing time based on clustering identification are proposed. This article is covering three main sections: (i) clustering generators and recognizing critical group; (ii) replacing the multi-machine system by a two-machine dynamic equivalent and eventually, to a one-machine-infinite-bus system; (iii) presenting a new method to predict post-fault trajectory and two simple algorithms for calculating critical clearing time, respectively established upon two different transient stability criterions. The performance is expected to figure out critical clearing time within 100ms-150ms and with an acceptable accuracy.
Current studies on storing XML data are focused on either mapping XML data to existing RDBMS efficiently or developing a native XML storage. Some native XML storages store each XML node with parsed object form. Clustering, the physical arrangement of each object, can be an important factor to increase the performance with this storing method. In this paper, we propose re-clustering techniques that can store an XML document efficiently. Proposed clustering technique uses path similarities among data nodes, which can reduce page I/Os when returning query results. And proposed technique can process a path query only using small number of clusters as possible instead of using all clusters. This enables efficient processing of path query because we can reduce search space by skipping unnecessary data. Finally, we apply existing clustering techniques to store XML data and compare the performance with proposed technique. Our results show that the performance of XML storage can be improved by using a proper clustering technique.
Journal of the Korean Data and Information Science Society
/
v.14
no.4
/
pp.725-736
/
2003
To provide the information needed to make a decision, it is important to know the relationship or pattern between variables in database. Grouping objects which have similar characteristics of pattern is called as cluster analysis, one of data mining techniques. In this study, it is compared with several partitioning clustering algorithms, based on the statistical distance or total variance in each cluster.
Journal of the Korean Data and Information Science Society
/
v.15
no.3
/
pp.555-563
/
2004
In classification and discrimination, we often face with incomplete group variable arising typically from many missing values and/or incredible cases. This paper suggests the use of K-means clustering for pre-adjusting incompleteness and in turn classification based on generalized statistical distance is performed. For illustrating the proposed procedure, simulation study is conducted comparatively with CART in data mining and traditional techniques which are ignoring incompleteness of group variable. Simulation study manifests that our methodology out-performs.
In this survey paper, we discuss biomedical ontologies and major text mining techniques applied to biomedicine and healthcare. Biomedical ontologies such as UMLS are currently being adopted in text mining approaches because they provide domain knowledge for text mining approaches. In addition, biomedical ontologies enable us to resolve many linguistic problems when text mining approaches handle biomedical literature. As the first example of text mining, document clustering is surveyed. Because a document set is normally multiple topic, text mining approaches use document clustering as a preprocessing step to group similar documents. Additionally, document clustering is able to inform the biomedical literature searches required for the practice of evidence-based medicine. We introduce Swanson's UnDiscovered Public Knowledge (UDPK) model to generate biomedical hypotheses from biomedical literature such as MEDLINE by discovering novel connections among logically-related biomedical concepts. Another important area of text mining is document classification. Document classification is a valuable tool for biomedical tasks that involve large amounts of text. We survey well-known classification techniques in biomedicine. As the last example of text mining in biomedicine and healthcare, we survey information extraction. Information extraction is the process of scanning text for information relevant to some interest, including extracting entities, relations, and events. We also address techniques and issues of evaluating text mining applications in biomedicine and healthcare.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.