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Abstract 
Bug report processing is a key element of bug fixing in modern software maintenance. Bug reports are not 
processed immediately after submission and involve several processes such as bug report deduplication and 
bug report triage before bug fixing is initiated; however, this method of bug fixing is very inefficient because all 
these processes are performed manually. Software engineers have persistently highlighted the need to automate 
these processes, and as a result, many automation techniques have been proposed for bug report processing; 
however, the accuracy of the existing methods is not satisfactory. Therefore, this study focuses on surveying to 
improve the accuracy of existing techniques for bug report processing. Reviews of each method proposed in 
this study consist of a description, used techniques, experiments, and comparison results. The results of this 
study indicate that research in the field of bug deduplication still lacks and therefore requires numerous studies 
that integrate clustering and natural language processing. This study further indicates that although all studies 
in the field of triage are based on machine learning, results of studies on deep learning are still insufficient. 
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1. Introduction 

With the constantly increasing complexity of bug report processing because of modern developments, 
developers are unable to avoid bugs. A bug simply means any unexpected, result and they significantly 
reduce the quality of software if unfixed. Thus, bug fixing is an extremely important task for developers. 

In a world of modern developments, developers primarily address bugs through bug reports. A bug 
report is a description of what a quality assurance team or users think is a discrepancy between the actual 
and the promised outcomes of a software. Addressing bug reports is indispensable in software 
maintenance, and thus, software engineers expect a bug tracking system to be efficient [1,2]. 

Bug report processing involves the processes from submitting the bug report [2-5], to fixing the bug. 
Fig. 1 shows how bugs are addressed at each stage of processing [6]. As seen from Fig. 1, many stages of 
processing are involved before the “Fixed” phase is reached. “Assigned” stage involves the most important 
task of allocation of bug reports to appropriate developers, and thus, requires additional effort than other 
stages [7-9]. There are two main reasons for this. 
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First, a duplicate bug report is a report on bugs that have already been solved. The amount of duplicate 
bug reports/whole bug reports is up to 30% in Firefox [10]. Thus, reassigning the already solved bug 
reports to developers is a waste of efficiency. Therefore, it is desirable to bundle these duplicate bug 
reports as one set. Generally, automatic duplicate bug report identification techniques do not work 
perfectly, and therefore, bug report identification is performed manually. 

Second, a bug report triage is the classification of bug reports by their meta field, such as priority or 
severity. Numerous bug reports are submitted daily and it is impossible for developers to process all of 
them. Thus, developers need to first address the bugs that are fatal to systems or make users 
uncomfortable. This indicates that a bug report triage is essential for software maintenance. Because the 
duplicate bug report identification process is included in bug report triage, bug report triage is also 
performed manually. In the case of Eclipse, two man-hours are required every day [11]. To compensate 
for this, many triage automation techniques have been proposed, but they do not show satisfactory 
accuracy. 

 

 
Fig. 1. Bug report processing cycle [3]. 

 
In this study, we investigate the bug report processing techniques based on three factors: utilized 

techniques, experiment target, and comparison with two fields (duplicate bug report identification and 
triage accuracy improvement) to improve the software maintenance performance. In the case of duplicate 
bug report identification, we focus on topic modeling, natural language processing, information retrieval, 
and clustering based on similarity. Most deduplication studies tend to utilize Mozilla (or a software 
developed by Mozilla, such as Firefox), Eclipse, and Open Office to configure their testing set. A few of 
them have proposed methods that integrate 2–3 techniques. In the case of improving bug report triage 
accuracy, we focus on classification techniques such as k-nearest neighbors (KNN), naïve Bayes (NB), 
and support vector machine (SVM).  

The rest of this paper is organized as follows: Section 2 introduces the form of bug reports in a modern 
development environment. Section 3 provides studies identifying duplicate bug reports. Section 4 
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presents studies for improving bug report triage accuracy similar to their meta field such as priority or 
severity. Finally, Section 5 concludes the paper and discusses some possible future issues. 

 
 

2. Bug Report Features in Modern Software Development 
Environment 

2.1 Form of Bug Reports 
 

A bug report is a document intended for users or a Q&A team to communicate bugs that cause program 
failures to developers in a specific format. Figs. 2–4 show reports of a bug in JIRA [12], Mantis [13], and 
Bugzilla [14]. The bug report of Fig. 2 is for Block Chain. It was submitted by the reporter using “Mekia 
Edwards” as the identifier. It can be seen that it is classified as having a “Highest” priority. It is an 
Unresolved status. The bug report of Fig. 3 is for the MantisBT project. It was submitted by the reporter 
using “shashi1” as an identifier. It can be seen that it is classified as having an “emergency” priority and a 
severity of “important”. It is the Opened status. The bug report of Fig. 4 is for Android. It was submitted 
by the reporter using “philipp” as an identifier.  

The metadata includes the following components:  
1) Product: Describes the environment in which a bug occurs.  
2) Component: Classifies the items based on their closeness to meta fields such as priority and 

severity. These metadata can be used as criteria for classifying bug reports.  

Priority is the classification of a bug over others based on its importance, and severity indicates the 
critical nature of a bug; thus, priority and severity are the most important tasks in bug classification, which 
is simply called “Triage”. The accuracy of triage is directly related to the quality of the software used for 
classification. In the case of Bugzilla, priority is in a scale of p1 to p5, with p1 being the highest priority. 
In the same case, severity is classified as Blocked (fatal bug rendering development or patching of a 
software impossible), Critical (fatal bug affecting program execution), Major (important functional flaw), 
Normal (common error), Minor (not an important functional flaw, or is an error can be easily fixed), 
Trivial (typographical error), and Enhancement (function and performance improvements). 

 
2.2 Bug-Handling Process 
 

Once a bug appears, it is processed according to the bug report processing cycle, as presented in Fig. 1. 
A bug is addressed at each stage as follows: 
 New: A new bug is first logged or found. A new bug is usually found by a user or the QA team. It is 

then moved to the “Assigned” stage where it will be classified to determine the type of handling. 
 Assigned: After a tester logs a bug, this stage executes the triage. Triaged bugs are classified by their 

priority and/or severity. If the triage determines a bug to be rejected, they are moved to the 
“Rejected” phase. If the triage determines a bug, it is assigned to the appropriate developer based 
on its priority and severity. 

 Open: This stage analyzes and corrects the bugs assigned to developers. When the bug is fixed, it is 
moved to the “Fixed” stage. 

 Fixed: In this stage, the developer sends the bug to the test team after fixing it. Based on the results 
of the test, the bug may be moved to the “Reopen” or “Retest” stages. 
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Fig. 2. Bug report in JIRA [12]. 

 

 
Fig. 3. Bug report in Mantis [13]. 



Dong-Gun Lee and Yeong-Seok Seo 
 

 

J Inf Process Syst, Vol.15, No.4, pp.967~985, August 2019 | 971 

 
Fig. 4. Bug report in Bugzilla [14]. 

 
 Reopen: In this stage, if a bug fixed by a developer still exists, it is sent back to the “Assigned” stage 

and the succeeding stages follow.  
 Rejected: If the developer feels the bug is not genuine, the bug is rejected. Then, the status of the 

bug is changed to “Rejected”. 
 Deferred: A bug assigned the “Deferred” status implies that it is expected to be fixed in next releases. 

There are several reasons for assigning the “Deferred” status to a bug. A few reasons are priority of 
the bug being low, lack of time for release, and no major effect by the bug on the software. 

 Duplicate: If a bug is reported twice or if two bugs are found to cause the same problem, then the 
status of one of them is changed to “Duplicate”. 

 Retest: In this stage, the tester retests the modified code provided by the developer to check if the 
defect has been fixed. 

 Verified: The tester retests the bug after it is fixed by the developer. If this bug is no longer detected 
in the software, then the status of the bug changed to “Verified”. 

 Closed: If the tester feels that the bug no longer exists in the software, the status of the bug is 
changed to “Closed”. This state means that the bug has been fixed, tested, and approved. 

 
2.3 Issues in Processing Previous Bug Reports 
 

Typical bug report processing systems generally focus on the identification of the types of bug reports. 
Through this identification, they attempt to automatically classify the types of bug reports and assign 
software developers responsible for resolving the reported issues. Thus, the most important point is to be 
able to accurately identify the type of the bug report. However, there are several issues for accurate type 
identification. For example, a bug report could be classified as “Trivial” because fonts are not just 
rendered in the website. Conversely, a bug report could be classified as “Critical” because a system crash 
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occurred. Even though this classification scheme is not entirely incorrect, it could cause wrong 
classification of the bug reports. Suppose there is a font which is not rendered correctly. If there is a typo 
in this font, or the font is represented in the pop-up pages that would disappear in a couple of days, these 
bugs could be trivial. In contrast, the fonts in the graphical user interface (GUI), which are always 
displayed on the web page or in fonts that contain important content, can lead to a misunderstanding by 
the user. In these cases, these bugs could be critical types in spite of the problem being just the font. In 
practice, because software developers need advanced techniques to improve bug report processing 
efficiency, many studies are focusing on reducing duplicate bug reports and improving bug triage 
performance, with the correct identification techniques for types of bug reports. 

 
 

3. Techniques for Reducing Duplicate Bug Reports 

When a bug occurs, many users report the bug to developers. Eventually, developers receive a lot of 
bug reports on the same bug. Duplicate bug reports cause boredom to developers and decrease their work 
efficiency. Thus, duplicate bug reports can be grouped as one set and processed at a time. There are many 
techniques for reducing the number of duplicate bug reports. In this study, we introduce novel methods 
for deduplication in three important areas: natural language processing (NLP), information retrieval (IR), 
and similarity-based classification. 

 
3.1 Natural Language Processing 
 

A common way to identify duplicate bug reports is to use NLP [15,16]. Because bug reports are 
described in natural language used by humans, different types of words are generally used. Therefore, for 
greater accuracy, methods (such as stemming, lemmatization, and stopword processing) are used [17,18]. 
Among all the NLP techniques, topic modeling is mainly used, which processes words using summary or 
text from bug reports and selects the criterion words. The topic selected in this process represents a few 
features of the bug report and defines the bug report that has same topic as a duplicate bug report [19,20]. 

The most frequently used technique for topic modeling is latent Dirichlet allocation (LDA). LDA 
addresses the drawbacks of the probability model probabilistic latent semantic analysis (PLSA). LDA is 
similar to PLSA in that it obtains the probability of words in a document, but the distribution of topics is 
assumed to follow the Dirichlet distribution [21]. 

Baek et al. [22] identified duplicate bug reports using the LDA, NB [23], and NB polynomial [23]. They 
compared the obtained results with the conventional machine learning method using Eclipse bug reports. 
As a result, duplicate bug reports were identified with an accuracy of approximately 80%. In addition, 
they indicated significant differences in using statistical methods. 

Zou et al. [24] proposed the LDA and N-gram (LNG) technique, which consists of two parts. One is 
topic modeling with existing LDA method and the other is a linearly coupled weight-based N-gram 
similarity. A new measure, exact-accuracy (EA) rate, was introduced to verify redundancy. As a result of 
verification using approximately 230,000 Eclipse bug reports, the LNG technique was found to have 
improved recall rate, precision rate, and EA rate compared with the existing techniques in detecting bug 
report duplication. In particular, the recall rate was improved by 2.96% to 10.53% compared with DTBM 
[16], which is a state-of-the-art approach used in detecting bug report duplication. 
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3.2 Information Retrieval 
 

Identification of duplicate bug reports based on information retrieval uses the meta data in bug reports. 
The bug report contains various meta data such as bug type, operation system, priority, and severity, 
which help identify similar bug reports [25-27]. However, because even bug reports in the same 
environment can sometimes have different solutions, duplicate bug report identification techniques 
based on information retrieval are often used in conjunction with other methods.  

Alipour et al. [15] focused on contextual information for bug report deduplication. They extracted the 
context implied by bug reports using BM25F techniques, a score algorithm used in IR fields, in pre-built 
software dictionaries (word lists). Their study also found that the extracted context from the bug report 
has non-functional requirements—related to software’s quality closely (not functionality)—as well as the 
subject of the bug report. Alipour et al. [15] constructed the words list using Android layered architectural 
words [28], software non-functional requirements words [29], Android topic words using LDA [30], 
Android topic words using labeled-LDA [30], and random words from English dictionary and evaluated 
using 37,236 Android reports. The result was a more than 11.55% improvement in bug report redundancy 
compared with the result of Sun et al. [19].  

Aggarwal et al. [31] supplemented the study of Alipour et al. [15] using a method called software 
literature context. This method uses words extracted from software engineering literature. This study 
provided a beneficial result using which the manual efforts on deduplication can be reduced, compared 
with the study by Alipour et al. [15] that extracts words from the bug report, and whose result was a slight 
loss of accuracy. The authors [31] further validated documents from Eclipse, Mozilla, Open Office, and 
Android bug reports used by Alipour et al. [15]. Their method was also shown to be available for general 
cases compared with Alipour et al.’s method. 

Sun et al. [19] proposed REP, a technique using similarity between two different bug reports dataset. 
REP is an extension of BM25F and uses non-textual fields (component, product, and version) as well as 
text content such as summary and contents of bug reports. Using these measures, the bug reports were 
identified and evaluated using Mozilla, Eclipse, and Open Office’s bug reports, resulting in a 10%–27% 
increase in recall rate compared with the previous version, and a 17%–23% improvement in mean average 
precision. 

Sun et al. [17] proposed a discriminative model for searching similar bug reports in bug tracking 
systems. The model uses information retrieval techniques to determine similarity between two bug 
reports based on 54 features. They applied the model to three large software bug reports from Firefox, 
Eclipse, and Open Office, demonstrating a relative improvement of 17%–31%, 22%–26%, and 35%–43% 
over the-state-of-art techniques. 

 
3.3 Clustering 
 

The method of identifying duplicate bug reports based on similarity is highly reliable because each bug 
report is directly compared. This technique can also be used to classify bug reports using a scale called 
similarity and is often used together with clustering because of their high affinity [32]. 

Hiew [32] introduced an approach based on topical detection and tracking techniques that considered 
clustering in news articles. They used this approach for each Firefox, Eclipse, Fedora, and Apache projects 
to achieve a 29% accuracy and a 50% recall rate as the best result for Firefox. 
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 Gopalan and Krishna [33] proposed a clustering-based technique to identify redundancy in a set of 
large bug reports. This technique maintains a low false positive, i.e., the rate at which normal bug reports 
are considered redundant. Eclipse, Mozilla, and Open Office were used for evaluation of this technique. 

 
3.4 Hybrid Techniques 
 

Achieve satisfactory identification accuracy with one technique is difficult. Therefore, many 
researchers have begun to use more than one technique in combination. In particular, information 
retrieval techniques are preferred to be supplemented mainly by the LDA method, which is a topical 
modeling technique of machine learning. 

Nguyen et al. [16] proposed DBTM, a technique that has both the merits of topical-based features and 
IR-based features. DBTM used BM25F and T-Model, an extension of the topic modeling technique LDA. 
Evaluation of the DTBM technique using bug reports from Eclipse, Open Office, and Mozilla indicated 
increased duplicate bug report identification by approximately 20% compared with the Relational Topic 
Model (RTM) [34] and REP [19].  

Lin et al. [35] proposed SVM-SBCTC method, an SVM that considers the semantic correlation of text 
based on SVM discriminative scheme (SVM-54) [17]. SVM-SBCTC applied all the correlation between 
the NLP (Word2vec), information retrieval (BM25), and clustering-based features. They verified the 
study on three large open source projects: Apache, ArgoUML, and SVN. Compared with the SVM-54 
scheme, the detection performance of SVM-SBCTC improved 2.79%–28.97% in the top-5 recall rates on 
three projects. 

Tian et al. [36] extended the study of Jalbert and Weimer [20]. Duplicate bug reports were identified 
using relative similarity. It includes text similarity, surface features, and clustering. They considered 
several factors for this extension. The first was to use the extension of BM25 rather than using the term 
appearance count as similarity criteria. The information retrieval community widely use BM25, and it is 
more familiar than the term frequency (TF)-based similarity measure. BM25 is also known as the most 
accurate measure method of technical text searches [19]. Second, the “product” meta field of different 
bug reports was applied. Bug reports classified as different “product” are more likely to not be duplicated. 
Third, it is to build a hybrid function to examine the top N of the most similar bug reports, rather than 
using the best out of the most similar bug reports. Using the Mozilla project, Tian et al. [36] has 
demonstrated better performance than Jalbert and Weimer [20], improving the true positives (from 8% 
to 24%) and maintaining the false positives low (at 9%). Calculating the harmonic mean of the true 
positive rate and true negative rate improved the accuracy of the previous approach (from 14.8% to 
38.6%). 

 
3.5 Comparative Analysis  
 

Fig. 5 shows the distribution of bug report deduplication studies based on the techniques. Table 1 shows 
the bug report deduplication study introduced in this study. 

Most studies use the same experiment target such as a Mozilla, Eclipse, Firefox (a part of Mozilla), and 
Open Office project. All studies, except that of Hiew [32], are improvements over prior studies or have 
become a comparison target. There is a lack of research on studies of combined use of clustering and 
NLP techniques. Thus, such studies could be one of the open challenges in this field. In particular, most  
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Fig. 5. Distribution of duplicate bug report identification techniques. 

 

Table 1. Features of duplicate bug report identification techniques 

Study Used 
techniques

Experiment target 
(data set) Compared target Feature 

Baek et al. [22] NLP Eclipse Traditional machine 
learning techniques 

Combine LDA, Naïve Bayes [23] and 
Naïve Bayes polynomial 

Zou et al. [24], 
LNG 

NLP Eclipse DBTM [16] Combine LDA and a linearly coupled 
weight-based N-gram similarity. 

Alipour et al. 
[15] 

IR Android REP [19] Apply contextual information to  BM25F 
using  pre-built software dictionaries 

Aggarwal et al. 
[31] 

IR Android, Eclipse, 
Mozilla, Open 

Office 

Alipour et al. [15] Supplement Alipour et al. [15] and use 
software literature context instead of 
contextual information. 

Sun et al. [19], 
REP 

IR Eclipse, Mozilla, 
Open Office 

SVM An extension of BM25F and uses non-
textual fields (component, product, and 
version) as well as text content 
(summary and contents) 

Sun et al. [17] IR Eclipse, Firefox, 
Open Office 

Jalbert and Weimer [20], 
Runeson et al. [18], 

Wang et al. [37] 

A discriminative model for searching 
similar bug reports in bug tracking 
systems. 

Hiew [32] Clustering Eclipse, Firefox, 
Fedora, Apache 

- Base on topical detection and tracking 
techniques that considered clustering 
in news articles. 

Gopalan and 
Krishna 
[33] 

Clustering Eclipse, Mozilla, 
Open Office 

Jalbert and Weimer 
[20], Tian et al. [36] 

A clustering-based technique to identify 
redundancy in a set of large bug 
reports. 

Nguyen et al. 
[16], 
DBTM 

Hybrid (NLP, 
IR) 

Eclipse, Mozilla, 
Open Office 

REP [19], RTM Combine BM25F and T-Model, an 
extension of the Topic Modeling 
technique LDA. 

Lin et al. [35], 
SVM-
SBCTC 

Hybrid (NLP, 
IR, clustering)

Apache, 
ArgoUML, SVN 

Sun et al. [17] SVM that considers the semantic 
correlation of text based on SVM 
discriminative scheme 

Tian et al. [36] Hybrid  
(IR, clustering)

Mozilla Jalbert and Weimer 
[20] 

Include text similarity, surface features, 
and clustering 

Clustering

IR NLP

Meta data of bug reports
based techniques.
- Alipour’s Study[15]
- Aggarwal’s Study[31]
- Sun’s Study[17, 19]

Nguyen’s Study
[16]

Most of studies use topic modeling
- Baek’s Study[22]
- Zou’s Study[24]

Lin’s Study[35]

Similarity based classification techniques.
- Hiew’s Study[32]
- Gopalan’s Study[33]

Tian’s Study[36]
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clustering-based studies are compared with the representative work (e.g., [20]) or are proposed without 
any comparative analysis with existing techniques. Thus, a variety of verification schemes need to be 
considered. In addition to the technical aspects, bug report processing processes or frameworks could 
also be a research issue. There is also a need for studies on methodologies that effectively build and utilize 
these frameworks across the enterprise, using the various existing above-mentioned techniques. 

 
 

4. Techniques for Improving Bug Triage Performance 

It is generally impossible for a limited number of developers to process all the bug reports submitted 
every day, which are usually great in number. Developers usually fix bugs that are critical to the operation 
of the software or those that are more prioritized; this classification of bug reports by priority or severity 
is referred to as triage. Techniques to improve the performance of bug reports triage are mainly 
performed through machine learning. 

 
4.1 Classification Algorithm 
 

Numerous bug tracking systems use classification techniques, such as SVM [38,39] and KNN [40], 
based on machine learning. However, they are rarely used alone, and they are mostly integrated with a 
classification technique based on NB [41-44] classification or heterogeneity. 

Anvik and Murphy [45] proposed a technique to create recommenders that assist with a variety of 
decisions aimed at streamlining the development process using machine learning techniques such as NB, 
EM [46,47], SVM, C4.5 (decision trees), nearest neighbor, and conjunctive rules. This technique extracts 
the normalized TF using the title and description. To evaluate this technique, they used bug reports from 
the Eclipse and Firefox projects. This technique showed 60% precision and 3% recall in Eclipse and 51% 
precision and 24% recall in Firefox. 

Bhattacharya and Neamtiu [48] proposed a method using refined classification to improve bug report 
triage accuracy and reduce the length of the tossing paths. It extracts features such as TF-IDF or bag-of-
words (BOW) using the NB and a tossing graph. It uses information such as bug report meta data of 
various types, title, description, keywords, product, component, and the last developer activities. They 
used Eclipse and Mozilla's bug reports to evaluate this technique and achieved 77.43% accuracy for 
Eclipse and 77.87% accuracy for Mozilla. 

Kanwal and Maqbool [49] defined the features of bug reports and proposed a prioritized recommender 
based on the classifier. They compared the SVM with the NB algorithm, the most commonly used 
classification algorithm, to indicate the differences in performance by the classifier used in this technique. 
As a result of evaluating Eclipse projects, the SVM was found to be superior to the NB algorithm for text 
features, whereas for categorical features, the performance of NB was found to be better than that of the 
SVM. The highest accuracy is achieved with SVM when categorical and text features are combined for 
training. 

Peng et al. [50] proposed a method to build a developer recommendation system to assign bugs based 
on relevant search scheme. This method consists of the index for bugs and searches for new bugs from 
the index. Then, it analyzes relevant bug and recommends it to the performance developer. They 
evaluated this method in Mozilla and Eclipse environments, and showed that it was better than machine 
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learning algorithms such as NB and SVM. 
Xuan et al. [51] proposed techniques using SVM, NB for various factors such as developer prioritization 

and severity identification. This technique extracts TF-IDF and developer priorities using meta data such 
as titles and descriptions. The evaluation was conducted in the Eclipse and Mozilla bug reports and the 
technique was found to be superior to SVM or NB. 

Xuan et al. [52] addressed the bug triage data reduction and improving the quality of bug data by 
reducing the scale. This method combines instance two selections: instance and feature. The method also 
reduces of bug- and word-dimensions at the same time by using the NB algorithm. This method also 
extracted TF from bug reports using title and description as meta data. It was evaluated using the bug 
reports of Eclipse and Mozilla. As a result, it was found to have an improved accuracy compared with the 
SVM, KNN, and NB. 

Yang and Lee [53] proposed a method to predict the severity of a newly submitted bug report. When a 
new bug report is submitted, it finds a similar topic and uses the bug report’s meta-fields to decrease the 
scope of the candidate bug report. It predicts the severity of the new bug report by training the extracted 
bug report with NB multinomial technique. They indicated that the method was more effective in 
predicting bug severity than NB, NB Multinomial, and KNN in Eclipse and Mozilla open-source projects. 
Its performance depends on the quality of the bug report. Generally, it is difficult to predict the bug 
reports as the Blocker label, because there are small number of bug reports identified as the Blocker label 
and many factors to be considered to classify the bug reports presented by various programming 
languages [15]. However, this study showed good predictions for the bug reports with Blocker severity 
level. 

Yang et al. [54] proposed a new approach to predict the severity of bug reports based on emotional 
similarity. This approach uses a unigram model to identify emotional words, and searches for bug reports 
with emotional words using Kullback–Leibler divergence. They proposed emotion simplicity (ES)-
Multinomial, a new algorithm that replaces the NB Multinomial. To compare ES-Multinomial with the 
existing NB Multinomial, they applied ES-Multinomial to open sources from Eclipse, GNU, JBoss, 
Mozilla, and WireShark and demonstrated that it was more efficient than the NB Multinomial. 

Zhang et al. [55] proposed a technique called KNN search and heterogeneous proximity (KSAP) that 
uses the heterogeneous network of bug repository and historical bug reports to improve auto-allocation 
of bug reports. The KSAP is a two-step process. The first step is to search for similar historically fixed bug 
reports, and the second is to rank the developers who contributed to similar bug reports by heterogeneous 
proximity. They used projects from Mozilla, Eclipse, Apache Ant, and Apache Tomcat6 for evaluation, 
and there was a 7.5%–32.25% recall improvement compared with ML-KNN [56,57], DREX [58], 
DRETOM [59], Bugzie [60], DevRec [57], and developer prioritization (DP) method [51]. They showed that 
the KSAP was better than other modern techniques when the developer works less. Adjusting the number 
of similar historically fixed bug reports (K) and developers (Qs) maintains the superiority of KSAP. 

Zhang et al. [61] proposed a severity prediction accuracy improvement method for automated 
techniques to replace manually assigned fixers. This method uses the REP [19] algorithm and KNN 
classification to find historical bug reports having the same features with input bugs. Then, it extracts the 
features to estimate the severity and recommend fixers. The method was applied to GCC, Open Office, 
Eclipse, NetBeans, and Mozilla’s open source for evaluation and improvements in precision, recall, and 
F-measure were demonstrated compared with DRETOM, DREX, and DevRec. 
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4.2 Specialized Algorithm 
 

Artificial neural networks, also used for deep learning, are often used in bug report triage. Conventional 
classification models such as BOW [62-64] are also replaced by techniques such as CNN and RNN.  

Mani et al. [65] proposed a bug report representation algorithm that learns syntax and meaning in an 
unsupervised way using DBRNN-A (an agent-based stay secondary network). They compared DBRNN-
A with cosine distance, NB, SVM, softmax classifier, and BOW model and showed that DBRNN-A 
provides a higher rank-10 average accuracy. 

Most of the studies that use topic modeling and information retrieval techniques for triaging focus on 
the meta-data in bug reports. They use the NB Multinomial to supplement the technique or use 
information such as time and emotion to find ways to allocate better-performing bug reports. 

Badashian et al. [66] proposed a new method to use Q&A community platforms such as GitHub, which 
is a source of developer expertise for bug triage. This method extracts keywords from bug reports using 
keywords (of metadata), project languages, tags from “GitHub” or “Stack overflow” as well as titles and 
descriptions. These keywords match social expertise. They evaluated this method using bug reports from 
20 GitHub projects and showed an 89.43% accuracy. 

Jonsson et al. [67] proposed a method using stacked generalization (SG) [68] as an ensemble learner to 
improve predictive accuracy in automatic bug allocation. SG is a state-of-the-art method that combines 
the output of various classifications used in various applications. One notable example is that SG-based 
solutions overwhelm competition in predicting movie ratings. In the field of software engineering, SG 
was applied in the prediction of the number of residual defects in the Black Box test [69] and detection of 
malware in smartphones [70]. The titles and descriptions were used for TF extraction and approximately 
35,000 industrial project bug reports were used for evaluation. The results showed an 89% percent 
accuracy. 

Shokripour et al. [71] presented an ABA-time-TF-IDF method, an auto-assignment technique based 
on TF-IDF time metadata. A corpus is constructed using nouns, and specialized knowledge is identified 
and recommended to developers. Shokripour compared the ABA-time-TF-IDF with ABA-TF-IDF, NB, 
VSM, SUM, and SVM in Eclipse, NetBean, and ArgoUML projects. As a result, accuracy and mean 
reciprocal rank (MBR) improved by up to 11.8% and 8.94%.  

Another study by Shokripour et al. [72] proposed a two-phased method using assignment 
recommendations based on the predicted location of the bug. It addressed several problems of the 
activity-based method. This method uses source code information as well as title and description, where 
meaningful words are extracted. They used bug reports from Eclipse and Firefox to achieve an 89.41% 
accuracy and 59.76% accuracy for the assessment. However, the number of bug reports is smaller than 
that of other studies. 

Tamrawi et al. [60] proposed Bugzie that recommends bug reports to developers by building a fuzzy-
set based on words extracted from titles and descriptions. Bugzie greatly improved both accuracy and 
time efficiency compared with most conventional machine learning techniques such as NB, Bayesian 
Network, C4.5, SVM, incremental NB, and incremental Bayesian Network in the Eclipse bug report. 

Wang et al. [73] proposed FixerCache, an unsupervised bug triage technique. FixerCache has overcome 
the problems of supervised classification based on the activation of its product components. FixerCache 
uses active developer caches to extract TF from the title and description of the bug. They evaluated 
FixerCache in a bug report from Eclipse and Mozilla, showing better accuracy than the SVM and NB. 
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Wen et al. [74] proposed the Configuration Bug Learner Uncovers Approved options (CoLUA), a two-
step automation technique that integrates NLP, IR, and machine learning, to address communication 
problems between bug reporters and developers. As the first step, CoLUA selects functions in the text 
information of the bug report and applies machine learning techniques to create a triage model. The 
second step identifies the configuration options that are included in the labeled bug report. CoLUA was 
applied to open-source projects from Mozilla, Apache, and MySQL. As a result, the average F-measure 
for the ZeroR classifier was found to be 0.33, whereas the average F-measure for CoLUA is 0.73 for all 
three projects. 

 
4.3 Comparative Analysis 
 

Table 2 lists the bug report triage studies that are introduced in this study. Most studies use the same 
experiment target such as Mozilla, Eclipse, Firefox (a part of Mozilla), and Open Office project. In 
addition, the influence of the NB and SVM methods was very strong in bug triage, i.e., 13 out of 17 studies 
used the NB or SVM methods. Thus, in order to improve the performance of bug report triage, it is 
necessary to carry out studies using various techniques, such as clustering, deep learning, and graph 
theory. In particular, deep learning-based approaches could be used as a key option to provide potential 
synergy with existing techniques. In addition to the technical aspects, enterprise-wide frameworks for 
improving efficiency of the bug report triage must be studied. 

 

Table 2. Features of bug report triage techniques 

Study Used techniques 
Experimental 
target (data set) 

Compared target Feature 

Anvik and 
Murphy [45] 

NB, EM, SVM, C4.5, 
nearest neighbor, 
conjunctive rules

Eclipse, Firefox - Create recommenders that assist with a 
variety of decisions aimed at 
streamlining the development 
process.

Bhattachira 
and Neamtiu 
[48] 

NB, Tossing graph Eclipse, Mozilla NB, Bayesian Network Use refined classification and reduce  
the length of the tossing paths. 

Kanwal and 
Maqbool [49] 

SVM, NB Eclipse SVM, NB Define the features of bug reports and 
proposes a prioritized recommender 
based on the classifier. 

Peng et al. [50] Indexing for 
searching relevant 

bug reports

Eclipse, Mozilla SVM, NB Recommend developers to assign bugs 
based on relevant search 

Xuan et al. [51] SVM, NB Eclipse, Mozilla SVM, NB Use SVM, NB for developer 
prioritization, severity identification, 
etc.

Xuan et al. [52] NB Eclipse, Mozilla SVM, NB, KNN Address the bug triage data reduction 
and how to improve the quality of 
bug data by reducing the scale. 

Yang and Lee 
[53] 

Naïve Bayes 
Multinomial 

Eclipse, Mozilla NB, Naïve Bayes 
Multinomial, KNN

Predict the severity of the new bug 
report by training the extracted bug 
report with Naïve Bayes Multinomial 
technique.

Yang and Lee 
[54], 
Simplicity-
Multinomial  

Naïve Bayes 
Multinomial, 

Kullback-Leibler 
divergence

Eclipse, Mozilla, 
JBoss, WireShark 

Naïve Bayes 
Multinomial 

Predict the severity of bug reports based 
on emotional similarity. 

(Continued on the next page) 
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Table 2. Continued 

Study Used techniques 
Experimental 
target (data set) 

Compared target Feature 

Zhang et al. 
[55], KSAP 

Heterogeneous 
network 

Eclipse, Mozilla, 
Apache Ant, 

Apache Tomcat6 

DREX [58], DRETOM 
[59], Bugzei [60], 

DevReg [55], 
developer 

prioritization [51]

Use heterogeneous network of bug 
repository and historical bug reports 

Zhang et al. 
[61] 

REP [19], KNN Eclipse, Mozilla, 
Open Office, 

GCC, NetBeans 

DREX [58], DRETOM 
[59], DevReg [57] 

Use the REP [19] algorithm and KNN 
classification to find historical bug 
reports similar to new bugs. 

Mani et al. [65] Deep learning Google Chromium, 
Core, Fire Fox

BOW model, softmax 
classifier, SVM, NB, 

cosine distance

Build model that learns a syntactic and 
semantic feature 

Badashian et 
al. [66] 

Keywords matching Github projects - Use Q&A community platforms, which 
is a source of developer expertise for 
bug triage

Jonsson et al. 
[67] 

Stacked 
generalization [68]

Industrial projects - Use stacked generalization [68] as an 
ensemble learner. 

Shokripour et 
al. [71], 
ABA-time-
TF-IDF 

TF-IDF Eclipse, NetBean, 
ArgoUML 

ABA-TF-IDF, NB, 
VSM, SUM, SVM 

Propose an auto-assignment technique 
based on TF-IDF's time metadata. 

Shokripour et 
al. [72] 

Words extraction Eclipse, Firefox - Propose a two-phase method using 
assignment recommendations based 
on the predicted location of the bug, 
and address several problems of the 
activity-based method. 

Tamrawi et al. 
[60], Bugzie 

Fuzzy set Eclipse NB, Bayesian Network, 
C4.5, SVM, 

incremental Naïve 
Bayes, incremental 
Bayesian Network

Recommend bug reports to  
developers by building a fuzzy set. 

Wang et al. 
[73], 
FixerCache 

Unsupervised 
training 

Eclipse, Mozilla SVM, NB Overcome the problems of supervised 
classification based on the activation 
of its product components 

Wen et al. [74], 
CoLUA 

NLP, IR, CBR Mozilla, Apache 
MySQL 

ZeroR A two-step automation technique that 
address communication problems 
between bug reports and developers. 

 
 

5. Conclusion 

This study systematically addressed the bug report processing techniques for improving software 
management. A number of studies were discussed based on identification of duplicate bug reports and 
triage bug reports. The studies were classified for the purpose of discussion, such as used techniques, 
experiment target, and compared target. The results indicated the future research direction of bug report 
processing techniques. 

Software bugs are inevitable during the development and maintenance phases. Because it is specified 
and managed in the form of software bug reports, it is necessary to study more efficient bug report 
processing techniques. Through this survey study, in our viewpoint, there are further issues in the two 
mainstreams of bug report studies: reducing duplicate bug reports and improving bug triage performance. 
From a technical point of view, one of the core techniques is identifying the similarity between bug reports 
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in this research field. Thus, it is necessary to study this technique in detail to build elaborate models for the 
two mainstreams issues mentioned above. In particular, deep learning-based and graph-based approaches 
[75-77] are in their early stages, and could be one option. There are still many deep learning algorithms 
and graph theories that can be applied to bug report processing systems. As more elaborate models are 
proposed in this field, the efficiency of the bug processing system can be increased, and consequently 
software development effort can be reduced. Thus, the researchers and practitioners must focus on 
progress of similarity studies between bug reports. From a research methodological point of view, in order 
to validate the superiority of the proposed techniques, it is necessary to analyze it with various existing 
techniques for efficient bug report processing. Instead of analyzing only the proposed technique itself, 
meaningful and practical results through comparative analysis with the various techniques proposed in the 
past showed be provided. Through such studies, it would be of great significance if software developers can 
be guided on which techniques should be used for reducing duplicate bug reports or improving bug triage 
performance in their software development environments. 
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