Journal of the Institute of Electronics Engineers of Korea SP
/
v.48
no.1
/
pp.8-15
/
2011
In this paper, we propose a new structure modeling algorithm from 3D cloud points of terrestrial LADAR data. Terrestrial LIDAR data have various obstacles which make it difficult to apply conventional algorithms designed for air-borne LIDAR data. In the proposed algorithm, the field data are separated into several clusters by adopting the structure extraction method which uses color information and Hough transform. And cluster based Delaunay triangulation technique is sequentially applied to model the artificial structure. Each cluster has its own priority and it makes possible to determine whether a cluster needs to be considered not. The proposed algorithm not only minimizes the effects of noise data but also interactively controls the level of modeling by using cluster-based approach.
Yoonseok, Jwa;Gunho, Sohn;Jong Un, Won;Wonchoon, Lee;Nakhyeon, Song
Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
/
v.33
no.2
/
pp.111-122
/
2015
This study purposed on introducing a new automated solution for detecting railway tracks and reconstructing track models from the mobile laser scanning data. The proposed solution completes following procedures; the study initiated with detecting a potential railway region, called Region Of Interest (ROI), and approximating the orientation of railway track trajectory with the raw data. At next, the knowledge-based detection of railway tracks was performed for localizing track candidates in the first strip. In here, a strip -referring the local track search region- is generated in the orthogonal direction to the orientation of track trajectory. Lastly, an initial track model generated over the candidate points, which were detected by GMM-EM (Gaussian Mixture Model-Expectation & Maximization) -based clustering strip- wisely grows to capture all track points of interest and thus converted into geometric track model in the tracking by detection framework. Therefore, the proposed railway track tracking process includes following key features; it is able to reduce the complexity in detecting track points by using a hypothetical track model. Also, it enhances the efficiency of track modeling process by simultaneously capturing track points and modeling tracks that resulted in the minimization of data processing time and cost. The proposed method was developed using the C++ program language and was evaluated by the LiDAR data, which was acquired from MMS over an urban railway track area with a complex railway scene as well.
Journal of the Korean Institute of Intelligent Systems
/
v.12
no.4
/
pp.334-340
/
2002
This paper proposes a self-organizing fuzzy modeling which can create a new hyperplane-shaped cluster by applying multiple regression to input/output data with relatively large fuzzy entropy, add the new cluster to fuzzy rule base and adjust parameters of the fuzzy model in repetition. Tn the coarse tuning, weighted recursive least squared algorithm and fuzzy C-regression model clustering are used and in the fine tuning, gradient descent algorithm is used to adjust parameters of the fuzzy model precisely And learning rates are optimized by utilizing meiosis-genetic algorithm. To check the effectiveness and feasibility of the suggested algorithm, four representative examples for system identification are examined and the performance of the identified fuzzy model is demonstrated in comparison with that of the conventional fuzzy models.
Proceedings of the Korea Inteligent Information System Society Conference
/
2001.01a
/
pp.278-282
/
2001
The discovery of tacit knowledge from domain experts is one of the most exciting challenges in today\`s knowledge management. The nature of decision knowledge in determining the quality a firm\`s short-term liquidity is full of abstraction, ambiguity, and incompleteness, and presents a typical tacit knowledge extraction problem. In dealing with knowledge discovery of this nature, we propose a scheme that integrates both knowledge elicitation and knowledge discovery in the knowledge engineering processes. The knowledge elicitation component applies the Verbal Protocol Analysis to establish industrial cases as the basic knowledge data set. The knowledge discovery component then applies fuzzy clustering to the data set to build a fuzzy knowledge based system, which consists of a set of fuzzy rules representing the decision knowledge, and membership functions of each decision factor for verifying linguistic expression in the rules. The experimental results confirm that the proposed scheme can effectively discover the expert\`s tacit knowledge, and works as a feedback mechanism for human experts to fine-tune the conversion processes of converting tacit knowledge into implicit knowledge.
Proceedings of the Korea Society of Information Technology Applications Conference
/
2005.11a
/
pp.173-176
/
2005
This paper proposes a fuzzy correction algorithm that can correct the distorted medical image caused by the scanning nonlinear velocity of the Digital X-ray Scanner System (DX-Scanner) using the Multichannel Ionization Chamber (MIC). In the DX-Scanner, the scanned medical image is distorted for reasons of unsuitable integration time at the nonlinear acceleration period of the AC servo motor during the inspection of patients. The proposed algorithm finds the nonlinear motor velocity modeling through fuzzy system by clustering and reconstructs the normal medical image lines by calculating the suitable moving distance with the velocity of the motor using the modeling, acceleration time and integration time. In addition, several image processing is included in the algorithm. This algorithm analyzes exact pixel lines by comparing the distance of the acceleration period with the distance of the uniform velocity period in every integration time and is able to compensate for the velocity of the acceleration period. By applying the proposed algorithm to the test pattern for checking the image resolution, the effectiveness of this algorithm is verified. The corrected image obtained from distorted image is similar to the normal and better image for a doctor's diagnosis.
In this paper, we introduce a new structure of fuzzy-neural networks Fuzzy Set-based Polynomial Neural Networks (FSPNN). The two underlying design mechanisms of such networks involve genetic optimization and information granulation. The resulting constructs are Fuzzy Polynomial Neural Networks (FPNN) with fuzzy set-based polynomial neurons (FSPNs) regarded as their generic processing elements. First, we introduce a comprehensive design methodology (viz. a genetic optimization using Genetic Algorithms) to determine the optimal structure of the FSPNNs. This methodology hinges on the extended Group Method of Data Handling (GMDH) and fuzzy set-based rules. It concerns FSPNN-related parameters such as the number of input variables, the order of the polynomial, the number of membership functions, and a collection of a specific subset of input variables realized through the mechanism of genetic optimization. Second, the fuzzy rules used in the networks exploit the notion of information granules defined over systems variables and formed through the process of information granulation. This granulation is realized with the aid of the hard C- Means clustering (HCM). The performance of the network is quantified through experimentation in which we use a number of modeling benchmarks already experimented with in the realm of fuzzy or neurofuzzy modeling.
In this paper. we introduce a new structure of fuzzy-neural networks Fuzzy Set-based Polynomial Neural Networks (FSPNN). The two underlying design mechanisms of such networks involve genetic optimization and information granulation. The resulting constructs are Fuzzy Polynomial Neural Networks (FPNN) with fuzzy set-based polynomial neurons (FSPNs) regarded as their generic processing elements. First, we introduce a comprehensive design methodology (viz. a genetic optimization using Genetic Algorithms) to determine the optimal structure of the FSPNNs. This methodology hinges on the extended Group Method of Data Handling (GMDH) and fuzzy set-based rules. It concerns FSPNN-related parameters such as the number of input variables, the order of the polynomial, the number of membership functions, and a collection of a specific subset of input variables realized through the mechanism of genetic optimization. Second, the fuzzy rules used in the networks exploit the notion of information granules defined over systems variables and formed through the process of information granulation. This granulation is realized with the aid of the hard C-Means clustering (HCM). The performance of the network is quantified through experimentation in which we use a number of modeling benchmarks already experimented with in the realm of fuzzy or neurofuzzy modeling.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
2008.04a
/
pp.325-328
/
2008
본 논문에서는 비선형 모델의 설계를 위해 Type-2 퍼지 논리 집합을 이용하여 불확실성 문제를 다룬다. 퍼지 논리 시스템의 멤버쉽 함수와 규칙의 구조는 불확실성이 존재하는 언어적인 정보 또는 수치적 데이터를 바탕으로 설계된다. 기존의 Type-1 퍼지 논리 시스템은 외부의 노이즈와 같은 불확실성을 효율적으로 취급할 수 없다. 그러나 Type-2 퍼지 논리 시스템은 불확실한 정보까지 멤버쉽 함수로 표현함으로서 불확실성을 효과적으로 다룰 수 있다. 따라서 본 논문에서는 규칙의 전 ${\cdot}$ 후반부가 Type-2 퍼지 집합으로 구성된 Type-2 퍼지 논리 시스템을 설계하고 불확실성의 변화에 대한 비선형 모델의 성능을 비교한다. 여기서 규칙 전반부 멤버쉽 함수의 정점 선택은 C-means 클러스터링 알고리즘을 이용하고, 규칙 후반부 퍼지 집합의 정점 결정에는 입자 군집 최적화(PSO : Particle Swarm Optimization) 알고리즘을 사용한다. 마지막으로, 비선형 모델 평가에 대표적으로 이용되는 가스로 시계열 데이터를 제안된 모델에 적용하고, 입력 데이터에 인위적인 노이즈가 포함되었을 경우 Type-2 퍼지 논리 시스템이 기존의 Type-1 퍼지 논리 시스템보다 우수함을 보인다.
Journal of Korean Institute of Industrial Engineers
/
v.28
no.3
/
pp.331-343
/
2002
This paper proposes a fuzzy rule-based model as a means to build usability models between emotional satisfaction and design variables of consumer products. Based on a subtractive clustering algorithm, this model obtains partially overlapping rules from existing data and builds multiple local models each of which has a form of a linear regression equation. The best subset procedure and cross validation technique are used to select appropriate input variables. The proposed technique was applied to the modeling of luxuriousness, balance, and attractiveness of office chairs. For comparison, regression models were built on the same data in two different ways; one using only potentially important variables selected by the design experts, and the other using all the design variables available. The results showed that the fuzzy rule-based model had a great benefit in terms of the number of variables included in the model. They also turned out to be adequate for predicting the usability of a new product. Better yet, the information on the product classes and their satisfaction levels can be obtained by interpreting the rules. The models, when combined with the information from the regression models, are expected to help the designers gain valuable insights in designing a new product.
Journal of the Korea Society of Computer and Information
/
v.23
no.10
/
pp.103-109
/
2018
In this paper, we propose a dynamic document classification method which breaks away from existing document classification method with artificial categorization rules focusing on suppliers and has changing categorization rules according to users' needs or social trends. The core of this dynamic document classification method lies in the fact that it creates classification criteria real-time by using topic modeling techniques without standardized category rules, which does not force users to use unnecessary frames. In addition, it can also search the details through the relevance analysis by calculating the relationship between the words that is difficult to grasp by word frequency alone. Rather than for logical and systematic documents, this method proposed can be used more effectively for situation analysis and retrieving information of unstructured data which do not fit the category of existing classification such as VOC (Voice Of Customer), SNS and customer reviews of Internet shopping malls and it can react to users' needs flexibly. In addition, it has no process of selecting the classification rules by the suppliers and in case there is a misclassification, it requires no manual work, which reduces unnecessary workload.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.