Abstract
In this paper, we propose a new structure modeling algorithm from 3D cloud points of terrestrial LADAR data. Terrestrial LIDAR data have various obstacles which make it difficult to apply conventional algorithms designed for air-borne LIDAR data. In the proposed algorithm, the field data are separated into several clusters by adopting the structure extraction method which uses color information and Hough transform. And cluster based Delaunay triangulation technique is sequentially applied to model the artificial structure. Each cluster has its own priority and it makes possible to determine whether a cluster needs to be considered not. The proposed algorithm not only minimizes the effects of noise data but also interactively controls the level of modeling by using cluster-based approach.
본 논문에서는 지상라이다에서 획득한 3차원 점군데이터로부터 구조물을 모델링하는 알고리듬을 제안한다. 지상라이다 점군 데이터는 항공라이다의 경우와 달리 목표 구조물의 크기와 비슷한 다양한 장애물이 존재하고 데이터의 밀도, 거리 등의 특성이 다르기 때문에 항공라이다에서 사용된 기존의 알고리듬을 그대로 적용하기가 곤란하다. 제안한 방법에서는 색상정보와 호프변환을 이용하여 구조물을 추출하는 기법을 기반으로 주어진 필드데이터를 여러 개의 클러스터로 구분한다. 클러스터 데이터의 우선순위에 따라서 Delaunay triangulation 기법을 차례대로 적용하여 모델링을 수행한다. 제안한 방법은 클러스터 단위로 모델링을 진행하므로 잡음에 의한 영향을 최소화할 수 있으며 사용자가 원하는 개수만큼의 클러스터를 선택함으로써 모델링의 수준을 대화식으로 조정할 수 있다는 장점이 있다.