Design of Nonlinear Model Using Type-2 Fuzzy Logic System by Means of C-Means Clustering

C-Means 클러스터링 기반의 Type-2 퍼지 논리 시스템을 이용한 비선형 모델 설계

  • Published : 2008.04.25

Abstract

본 논문에서는 비선형 모델의 설계를 위해 Type-2 퍼지 논리 집합을 이용하여 불확실성 문제를 다룬다. 퍼지 논리 시스템의 멤버쉽 함수와 규칙의 구조는 불확실성이 존재하는 언어적인 정보 또는 수치적 데이터를 바탕으로 설계된다. 기존의 Type-1 퍼지 논리 시스템은 외부의 노이즈와 같은 불확실성을 효율적으로 취급할 수 없다. 그러나 Type-2 퍼지 논리 시스템은 불확실한 정보까지 멤버쉽 함수로 표현함으로서 불확실성을 효과적으로 다룰 수 있다. 따라서 본 논문에서는 규칙의 전 ${\cdot}$ 후반부가 Type-2 퍼지 집합으로 구성된 Type-2 퍼지 논리 시스템을 설계하고 불확실성의 변화에 대한 비선형 모델의 성능을 비교한다. 여기서 규칙 전반부 멤버쉽 함수의 정점 선택은 C-means 클러스터링 알고리즘을 이용하고, 규칙 후반부 퍼지 집합의 정점 결정에는 입자 군집 최적화(PSO : Particle Swarm Optimization) 알고리즘을 사용한다. 마지막으로, 비선형 모델 평가에 대표적으로 이용되는 가스로 시계열 데이터를 제안된 모델에 적용하고, 입력 데이터에 인위적인 노이즈가 포함되었을 경우 Type-2 퍼지 논리 시스템이 기존의 Type-1 퍼지 논리 시스템보다 우수함을 보인다.