• Title/Summary/Keyword: cluster-based AODV

Search Result 9, Processing Time 0.019 seconds

Cluster-based AODV for ZigBee Wireless Measurement and Alarm Systems (ZigBee 무선계측/경보 시스템을 위한 클러스터 기반의 AODV)

  • Park, Jae-Won;Kim, Hong-Rok;Lee, Yun-Jung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.9
    • /
    • pp.920-926
    • /
    • 2007
  • Establishing a fixed path for the message delivery through a wireless network is impossible due to the mobility. Among the number of routing protocols that have been proposed for wireless ad-hoc networks, the AODV(Ad-hoc On-demand Distance Vector) algorithm is suitable in the case of highly dynamic topology changes, along with ZigBee Routing(ZBR), with the exception of route maintenance. Accordingly, this paper introduces a routing scheme focusing on the energy efficiency and route discovery time for wireless alarm systems using IEEE 802.15.4-based ZigBee. Essentially, the proposed routing algorithm utilizes a cluster structure and applies ZBR within a cluster and DSR (Dynamic Source Routing) between clusters. The proposed algorithm does not require a routing table for the cluster heads, as the inter-cluster routing is performed using DSR. The performance of the proposed algorithm is evaluated and compared with ZBR using an NS2 simulator. The results confirm that the proposed Cluster-based AODV (CAODV) algorithm is more efficient than ZBR in terms of the route discovery time and energy consumption.

Cluster Routing for Service Lifetime of Wireless Multimedia Sensor Networks (무선 멀티미디어 센서 네트워크의 서비스 수명을 위한 클러스터 라우팅)

  • Lee, Chongdeuk
    • Journal of Digital Convergence
    • /
    • v.11 no.5
    • /
    • pp.279-284
    • /
    • 2013
  • This paper proposes a new cluster-based routing protocol for assuring the service lifetime of wireless multimedia sensor networks. The proposed protocol performs the intra-cluster routing and inter-cluster routing to reduce the energy consumption and service lifetime in the wireless sensor multimedia computing environment, and the proposed mechanism enhances the routing reliability, and it minimizes the packet loss, overhead, and energy consumption. The simulation results show that the proposed mechanism outperforms DSR and AODV.

Improved Ad Hoc On-demand Distance Vector Routing(AODV) Protocol Based on Blockchain Node Detection in Ad Hoc Networks

  • Yan, Shuailing;Chung, Yeongjee
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.12 no.3
    • /
    • pp.46-55
    • /
    • 2020
  • Ad Hoc network is a special wireless network, mainly because the nodes are no control center, the topology is flexible, and the networking could be established quickly, which results the transmission stability is lower than other types of networks. In order to guarantee the transmission of data packets in the network effectively, an improved Queue Ad Hoc On-demand Distance Vector Routing protocol (Q-AODV) for node detection by using blockchain technology is proposed. In the route search process. Firstly, according to the node's daily communication record the cluster is formed by the source node using the smart contract and gradually extends to the path detection. Then the best optional path nodes are chained in the form of Merkle tree. Finally, the best path is chosen on the blockchain. Simulation experiments show that the stability of Q-AODV protocol is higher than the AODV protocol or the Dynamic Source Routing (DSR) protocol.

Improved Paired Cluster-Based Routing Protocol in Vehicular Ad-Hoc Networks

  • Kim, Wu Woan
    • International journal of advanced smart convergence
    • /
    • v.7 no.2
    • /
    • pp.22-32
    • /
    • 2018
  • In VANET, frequent movement of nodes causes dynamic changes of the network topology. Therefore the routing protocol, which is stable to effectively respond the changes of the network topology, is required. Moreover, the existing cluster-based routing protocol, that is the hybrid approach, has routing delay due to the frequent re-electing of the cluster header. In addition, the routing table of CBRP has only one hop distant neighbor nodes. PCBRP (Paired CBRP), proposed in this paper, ties two clusters in one pair of clusters to make longer radius. Then the pair of the cluster headers manages and operates corresponding member nodes. In the current CBRP, when the cluster header leaves the cluster the delay, due to the re-electing a header, should be occurred. However, in PCBRP, another cluster header of the paired cluster takes the role instead of the left cluster header. This means that this method reduces the routing delay. Concurrently, PCBRP reduces the delay when routing nodes in the paired cluster internally. Therefore PCBRP shows improved total delay of the network and improved performance due to the reduced routing overhead.

An Energy Efficient Clustering Algorithm in Mobile Adhoc Network Using Ticket Id Based Clustering Manager

  • Venkatasubramanian, S.;Suhasini, A.;Vennila, C.
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.7
    • /
    • pp.341-349
    • /
    • 2021
  • Many emerging mobile ad-hoc network application communications are group-oriented. Multicast supports group-oriented applications efficiently, particularly in a mobile environment that has a limited bandwidth and limited power. Energy effectiveness along with safety are 2 key problem in MANET design. Within this paper, MANET is presented with a stable, energy-efficient clustering technique. In this proposed work advanced clustering in the networks with ticket ID cluster manager (TID-CMGR) has formed in MANET. The proposed routing scheme makes secure networking the shortest route possible. In this article, we propose a Cluster manager approach based on TICKET-ID to address energy consumption issues and reduce CH workload. TID-CMGR includes two mechanism including ticket ID controller, ticketing pool, route planning and other components. The CA (cluster agent) shall control and supervise the functions of nodes and inform to TID-CMGR. The CH conducts and transfers packets to the network nodes. As the CH energy level is depleted, CA elects the corresponding node with elevated energy values, and all new and old operations are simultaneously stored by CA at this time. A simulation trial for 20 to 100 nodes was performed to show the proposed scheme performance. The suggested approach is used to do experimental work using the NS- simulator. TIDCMGR is compared with TID BRM and PSO to calculate the utility of the work proposed. The assessment shows that the proposed TICKET-ID scheme achieves 90 percent more than other current systems.

Trust Predicated Routing Framework with Optimized Cluster Head Selection using Cuckoo Search Algorithm for MANET

  • Sekhar, J. Chandra;Prasad, Ramineni Sivarama
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.4 no.2
    • /
    • pp.115-125
    • /
    • 2015
  • This paper presents a Cuckoo search algorithm to secure adversaries misdirecting multi-hop routing in Mobile ad hoc networks (MANETs) using a robust Trust Predicated Routing Framework with an optimized cluster head selection. The clustering technique designed in this framework leads to efficient routing in MANETs. The heavy work load in the node causes an energy drop in cluster head, which leads to re-clustering of the group, and another cluster head is selected to avoid packet loss during data transmission. The problem in the re-clustering process is that the overall efficiency of the routing process is reduced and the processing time is increased. A Cuckoo search based optimization algorithm is proposed to solve the problem of re-clustering by selecting the secondary cluster head within the initially formed cluster group and eliminating the reclustering process. The proposed framework enables a node to select a reliable and secure route for MANET and the performance can be evaluated by comparing the simulated results with the AODV routing protocol, which shows that the performance of the proposed routing protocol are improved significantly.

Location-based Routing(LBR) Algorithm to Improve Efficiency in the Wireless Sensor Network (무선 센서 네트워크에서 효율성을 향상시킨 위치기반 라우팅 알고리즘)

  • Jeong, Yoon-Su;Lee, Sang-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.1B
    • /
    • pp.31-39
    • /
    • 2007
  • Wireless sensor network can increase independence and flexibility of network because it consists of mobile node without the aid of fixed infra, but, by unrestricted for the participation and breakaway of node, it has the difficulty in routing which is a basic function of network operation. To solve those problems, a suggestion is the location-based routing algorithm using geological or logical location information. The suggested algorithm which is based on cluster for location information of sensor is applicable to wireless sensor network of discrete situation, which guarantees extension and mobility. By efficiency analysis and reactive routing algorithm of current DSR and AODV, packet transmission ratio, routing overheads, and average communication expense is compared as node increases.

A Joint Topology Discovery and Routing Protocol for Self-Organizing Hierarchical Ad Hoc Networks (자율구성 계층구조 애드혹 네트워크를 위한 상호 연동방식의 토폴로지 탐색 및 라우팅 프로토콜)

  • Yang Seomin;Lee Hyukjoon
    • The KIPS Transactions:PartC
    • /
    • v.11C no.7 s.96
    • /
    • pp.905-916
    • /
    • 2004
  • Self-organizing hierarchical ad hoc network (SOHAN) is a new ad-hoc network architecture designed to improve the scalability properties of conventional 'flat' ad hoc networks. This network architecture consists of three tiers of ad-hoc nodes, i.e.. access points, forwarding nodes and mobile nodes. This paper presents a topology discovery and routing protocol for the self-organization of SOHAN. We propose a cross-layer path metric based on link quality and MAC delay which plays a key role in producing an optimal cluster-based hierarchical topology with high throughput capacity. The topology discovery protocol provides the basis for routing which takes place in layer 2.5 using MAC addresses. The routing protocol is based on AODV with appropriate modifications to take advantage of the hierarchical topology and interact with the discovery protocol. Simulation results are presented which show the improved performance as well as scalability properties of SOHAN in terms of through-put capacity, end-to-end delay, packet delivery ratio and control overhead.

A Study on Flooding Attack Detection and Response Technique in MANET (MANET에서 플러딩 공격 탐지 및 대응 기법에 관한 연구)

  • Yang, Hwan Seok;Yoo, Seung Jae
    • Convergence Security Journal
    • /
    • v.13 no.4
    • /
    • pp.41-46
    • /
    • 2013
  • Routing protocol using in the existing wire network cannot be used as it is for efficient data transmission in MANET. Because it consists of only mobile nodes, network topology is changing dynamically. Therefore, each mobile node must perform router functions. Variety of routing attack like DoS in MANET is present owing to these characteristic. In this paper, we proposed cooperative-based detection method to improve detection performance of flooding attack which paralyzes network by consuming resource. Accurate attack detection is done as per calculated adaptively threshold value considered the amount of all network traffic and the number of nodes. All the mobile nodes used a table called NHT to perform collaborative detection and apply cluster structure to the center surveillance of traffic.