KSII Transactions on Internet and Information Systems (TIIS)
/
v.10
no.2
/
pp.444-461
/
2016
A power-saving mechanism for smartphone devices is developed by analyzing the features of data that are received from Internet of Things (IoT) sensors devices to optimize the data processing policies. In the proposed GreenIoT architecture for power-saving in IoT, the power saving and feedback mechanism are implemented in the IoT middleware. When the GreenIoT application in the power-saving IoT architecture is launched, IoT devices collect the sensor data and send them to the middleware. After the scanning module in the IoT middleware has received the data, the data are analyzed by a feature evaluation module and a threshold analysis module. Based on the analytical results, the policy decision module processes the data in the device or in the cloud computing environment. The feedback mechanism then records the power consumed and, based on the history of these records, dynamically adjusts the threshold value to increase accuracy. Two smart living applications, a biomedical application and a smart building application, are proposed. Comparisons of data processed in the cloud computing environment show that the power-saving mechanism with IoT architecture reduces the power consumed by these applications by 24% and 9.2%.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2014.05a
/
pp.238-240
/
2014
A cloud computing include a SaaS frameworks be able to use a software as a service. Despite the existing service depending on the difference of the tenant and the use, if the service provider re-establish a service, they are required resources In terms of costs and managerial. So we propose a technique for analysis software structure using the process algebra to reuse existing software. A process algebra analyze the structure of the software, express in business process or different languages and verify that it can be reused. As CCS in a process algebra is useful to convert the business process or XML, by using this, we structure a process and propose meta storage for comparison and management a structured document.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.16
no.12
/
pp.3960-3975
/
2022
To analyze and compare the most influencing factors on cloud computing adoption (CCA) in the healthcare organization, a systematic review and meta-analyses of studies was performed using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) and Cochrane collaboration recommendations. A search of PubMed, ScienceDirect, Springer, Wiley Online, and Taylor & Francis Online digital libraries (From inception to January 19, 2022) was performed. A total of 17 studies met the defined studies' inclusion and exclusion criteria. Statistical significance difference favoring most influencing factors on CCA were (MD 0.76, 95% CI -1.48 - 3.01, p <0.00001, I2 = 90%), (MD 1.40, 95% CI -4.76 - 7.55, p < 0.00007, I2 = 97%) (MD 0.17, 95% CI -2.69 - 3.03, p<0.00001, I2 = 96%) for technology vs. organizational, technology vs. environmental and business vs. human factors, respectively. Organizational and environmental factors had greater impacts on CCA compared with technological factors. Moreover, business factors were more influential than the human factors.
Rapid advances in science and technology with exponential development of smart mobile devices, workstations, supercomputers, smart gadgets and network servers has been witnessed over the past few years. The sudden increase in the Internet population and manifold growth in internet speeds has occasioned the generation of an enormous amount of data, now termed 'big data'. Given this scenario, storage of data on local servers or a personal computer is an issue, which can be resolved by utilizing cloud computing. At present, there are several cloud computing service providers available to resolve the big data issues. This paper establishes a framework that builds Hadoop clusters on the new single-board computer (SBC) Mobile Raspberry Pi. Moreover, these clusters offer facilities for storage as well as computing. Besides the fact that the regular data centers require large amounts of energy for operation, they also need cooling equipment and occupy prime real estate. However, this energy consumption scenario and the physical space constraints can be solved by employing a Mobile Raspberry Pi with Hadoop clusters that provides a cost-effective, low-power, high-speed solution along with micro-data center support for big data. Hadoop provides the required modules for the distributed processing of big data by deploying map-reduce programming approaches. In this work, the performance of SBC clusters and a single computer were compared. It can be observed from the experimental data that the SBC clusters exemplify superior performance to a single computer, by around 20%. Furthermore, the cluster processing speed for large volumes of data can be enhanced by escalating the number of SBC nodes. Data storage is accomplished by using a Hadoop Distributed File System (HDFS), which offers more flexibility and greater scalability than a single computer system.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.13
no.4
/
pp.1812-1824
/
2019
The location and human activity are usually used as one of the important parameters to monitor the health status in healthcare devices. However, nearly all existing location and monitoring systems have the limitation of short-range communication and high power consumption. In this paper, we propose a new mechanism to collect and transmit monitoring information based on LoRa technology. The monitoring device with sensors can collect the real-time activity and location information and transmit them to the cloud server through LoRa gateway. The user can check all his history and current information through the specific designed mobile applications. Experiment was carried out to verify the communication, power consumption and monitoring performance of the entire system. Experimental results demonstrate that this system can collect monitoring and activity information accurately and provide the long rang coverage with low power consumption.
Over the last couple of years, traditional VANET (Vehicular Ad Hoc NETwork) evolved into VANET-based clouds. From the VANET standpoint, applications became richer by virtue of the boom in automotive telematics and infotainment technologies. Nevertheless, the research community and industries are concerned about the under-utilization of rich computation, communication, and storage resources in middle and high-end vehicles. This phenomenon became the driving force for the birth of VANET-based clouds. In this paper, we envision a novel application layer of VANET-based clouds based on the cooperation of the moving cars on the road, called CaaS (Cooperation as a Service). CaaS is divided into TIaaS (Traffic Information as a Service), WaaS (Warning as a Service), and IfaaS (Infotainment as a Service). Note, however, that this work focuses only on TIaaS and WaaS. TIaaS provides vehicular nodes, more precisely subscribers, with the fine-grained traffic information constructed by CDM (Cloud Decision Module) as a result of the cooperation of the vehicles on the roads in the form of mobility vectors. On the other hand, WaaS provides subscribers with potential warning messages in case of hazard situations on the road. Communication between the cloud infrastructure and the vehicles is done through GTs (Gateway Terminals), whereas GTs are physically realized through RSUs (Road-Side Units) and vehicles with 4G Internet access. These GTs forward the coarse-grained cooperation from vehicles to cloud and fine-grained traffic information and warnings from cloud to vehicles (subscribers) in a secure, privacy-aware fashion. In our proposed scheme, privacy is conditionally preserved wherein the location and the identity of the cooperators are preserved by leveraging the modified location-based encryption and, in case of any dispute, the node is subject to revocation. To the best of our knowledge, our proposed scheme is the first effort to offshore the extended traffic view construction function and warning messages dissemination function to the cloud.
In the cloud computing environment, servers and applications can be set up within minutes, and recovery in case of fail ures has also become easier. Particularly, using virtual servers in the cloud is not only convenient but also cost-effective compared to the traditional approach of setting up physical servers just for temporary services. However, most of the und erlying networks and security systems that serve as the foundation for such servers and applications are primarily hardwa re-based, posing challenges when it comes to implementing cloud virtualization. Even within the cloud, there is a growing need for virtualization-based security and protection measures for elements like networks and security infrastructure. This paper discusses research on enhancing the security of cloud networks using network virtualization technology. I configured a secure network by leveraging virtualization technology, creating virtual servers and networks to provide various security benefits. Link virtualization and router virtualization were implemented to enhance security, utilizing the capabilities of virt ualization technology. The application of virtual firewall functionality to the configured network allowed for the isolation of the network. It is expected that based on these results, there will be a contribution towards overcoming security vulnerabil ities in the virtualized environment and proposing a management strategy for establishing a secure network.
Saeed, Waqar;Ahmad, Zulfiqar;Jehangiri, Ali Imran;Mohamed, Nader;Umar, Arif Iqbal;Ahmad, Jamil
KSII Transactions on Internet and Information Systems (TIIS)
/
v.15
no.1
/
pp.35-57
/
2021
Fog computing aims to provide the solution of bandwidth, network latency and energy consumption problems of cloud computing. Likewise, management of data generated by healthcare IoT devices is one of the significant applications of fog computing. Huge amount of data is being generated by healthcare IoT devices and such types of data is required to be managed efficiently, with low latency, without failure, and with minimum energy consumption and low cost. Failures of task or node can cause more latency, maximum energy consumption and high cost. Thus, a failure free, cost efficient, and energy aware management and scheduling scheme for data generated by healthcare IoT devices not only improves the performance of the system but also saves the precious lives of patients because of due to minimum latency and provision of fault tolerance. Therefore, to address all such challenges with regard to data management and fault tolerance, we have presented a Fault Tolerant Data management (FTDM) scheme for healthcare IoT in fog computing. In FTDM, the data generated by healthcare IoT devices is efficiently organized and managed through well-defined components and steps. A two way fault-tolerant mechanism i.e., task-based fault-tolerance and node-based fault-tolerance, is provided in FTDM through which failure of tasks and nodes are managed. The paper considers energy consumption, execution cost, network usage, latency, and execution time as performance evaluation parameters. The simulation results show significantly improvements which are performed using iFogSim. Further, the simulation results show that the proposed FTDM strategy reduces energy consumption 3.97%, execution cost 5.09%, network usage 25.88%, latency 44.15% and execution time 48.89% as compared with existing Greedy Knapsack Scheduling (GKS) strategy. Moreover, it is worthwhile to mention that sometimes the patients are required to be treated remotely due to non-availability of facilities or due to some infectious diseases such as COVID-19. Thus, in such circumstances, the proposed strategy is significantly efficient.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.16
no.4
/
pp.1146-1165
/
2022
A huge amount of data in the form of videos and images is being produced owning to advancements in sensor technology. Use of low performance commodity hardware coupled with resource heavy image processing and analyzing approaches to infer and extract actionable insights from this data poses a bottleneck for timely decision making. Current approach of GPU assisted and cloud-based architecture video analysis techniques give significant performance gain, but its usage is constrained by financial considerations and extremely complex architecture level details. In this paper we propose a data pipeline system that uses open-source tools such as Apache Spark, Kafka and OpenCV running over commodity hardware for video stream processing and image processing in a distributed environment. Experimental results show that our proposed approach eliminates the need of GPU based hardware and cloud computing infrastructure to achieve efficient video steam processing for face detection with increased throughput, scalability and better performance.
Journal of Korea Society of Industrial Information Systems
/
v.21
no.2
/
pp.73-91
/
2016
This study sheds light on the quality aspect of cloud computing services as next IT platform. Three tasks of the research are to extract the quality factors of cloud service from the user's viewpoint, empirically analyze the perceptual differences between the user group and the provider group by applying the IPA technique, and suggest some quality factors that need to be improved. Based on the previous researches and focus group evaluation, 13 quality factors have been established. Two field surveys have been performed respectively to collect the perceptual importance and satisfaction level of the users and the providers. It is shown that the quality satisfaction of the user group is lower than the quality perceived by the providers. And there exist significant differences between two groups in respect to quality importance level and IPA matrix. In conclusion, 6 quality factors that need to be improved are suggested such as service functionality, service availability, interoperability, scalability, confidentiality, and provider's responsiveness.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.