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Abstract 

 
A huge amount of data in the form of videos and images is being produced owning to 
advancements in sensor technology. Use of low performance commodity hardware coupled 
with resource heavy image processing and analyzing approaches to infer and extract actionable 
insights from this data poses a bottleneck for timely decision making. Current approach of 
GPU assisted and cloud-based architecture video analysis techniques give significant 
performance gain, but its usage is constrained by financial considerations and extremely 
complex architecture level details. In this paper we propose a data pipeline system that uses 
open-source tools such as Apache Spark, Kafka and OpenCV running over commodity 
hardware for video stream processing and image processing in a distributed environment. 
Experimental results show that our proposed approach eliminates the need of GPU based 
hardware and cloud computing infrastructure to achieve efficient video steam processing for 
face detection with increased throughput, scalability and better performance.   
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1. Introduction 

Recent advancement of technology has increased the amount of digital data produced every 
single day. Most digital data is produced by social media websites, digital video cameras, 
mobile devices, and various sensors connected to the Inter- net. A huge amount of this data is 
in the form of images and videos, providing actionable insights for businesses and individuals. 
Moreover, the ubiquitous deployment of cheap and readily available video cameras for 
security and surveillance has increased the demand for digital video stream processing and 
analytics [1, 2]. Traditionally the video streams are analyzed manually with the help of human 
operators. Depending upon the requirements, the stored video streams are viewed one by one, 
and the desired information is extracted. The manual inspection of video data is a time-
consuming process, and human error chances are always imminent [3]. 

The advancement in image processing and computer vision has introduced various new 
paradigms for automated information extraction from images and videos. Object detection is 
an essential application of this field that serves as the foundation of numerous other video 
analytics types. Scientists have developed algorithms to classify and identify objects of interest 
from video without any human intervention. But the video data generated from surveillance 
cameras and other sources are usually massive and introduce significant challenges in 
analyzing and performing desired image processing operations as these algorithms are already 
in their nature are extremely resource-consuming [4, 5]. Therefore one of the dominant 
bottlenecks remains the automation of video stream processing as frame by frame video 
analysis requires a considerable amount of computing, network, and storage resources. 

Existing solutions providing video analytics overcome this problem using expensive 
hardware such as Graphics Processing Units [6] and expensive cloud-based architectures that 
harness the power of multiple computing resources as a single unit [7]. GPU assisted video 
analysis techniques generally parallelize image processing tasks; therefore, significant 
performance gain has been observed by deploying video analytic architectures on top of GPU 
assisted hardware. But such hardware is usually constrained to financial limitations and 
extremely complex architecture level details. Similarly, there have been efforts to use cloud 
computing power to dissipate resource extensive, image processing tasks over multiple 
machines. Although cloud-based image processing systems have also shown promising results, 
such architectures are still constrained to security, outage, and cost. Current research in the 
Big Data field provides us open-source tools that can be used with commodity hardware to 
process a large amount of data efficiently. There is a need for a system that can harness the 
power of these Big Data technologies for video analytics to overcome the financial and 
security constraints that organizations and researchers have to face while opting for GPUs and 
cloud-based architectures. 

In this paper, we proposed and evaluated a data pipeline system for processing video 
streams using open-source tools, namely Apache Spark [8], Kafka [9], and OpenCV, a well- 
known image processing library. Our proposed video analysis pipeline consists of three basic 
modules. The first module is responsible for frame extraction and their encoding to strings so 
that these frames can be transmitted to the messaging queue. In our second module, we used 
Kafka, an open-source message publishing framework, as a messaging queue that works as 
the Apache Spark streaming data source. The third part of our proposed pipeline is the Spark 
streaming application that runs on a cluster of commodity computers to apply the OpenCV 
algorithm on video frames in a distributed fashion and then stores the output in a database. 

Our experimental evaluation shows the proposed video stream analytics pipeline’s 
scalability and performance using different cluster sizes based on commodity machines for the 
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face detection task. The main contributions of this paper include: 
 

i. Propose a video analytics pipeline using open-source big data tools that run over 
commodity hardware for efficient video stream processing. 

ii. Integration of OpenCV image processing library with Apache Spark to simplify 
image processing in a distributed environment. 

iii.  Evaluate the proposed pipeline for face detection task using different video 
formats. 

iv.  Evaluate the Kafka producer throughput for varying image resolutions. 
v. Evaluation of the proposed pipeline for scalability and performance using 

different cluster sizes built using commodity machines. 
 
The rest of the paper is organized as follows. The related work is presented in Section II. 

In section III, we describe in detail our proposed methodology. Experimental results and 
performance evaluation of the video analysis pipeline is presented in Section IV. And in 
Section V, the conclusions and future direction of our work is discussed. 

2. Related Work 

  The amount of video and image data being generated has increased to a tremendous 
amount. Not only that, manual inspection of these video streams has become impractical, but 
also, the commodity systems with single CPU computational power cannot process it 
efficiently. To overcome the challenges caused by the vast amount of data, a new technological 
domain is developing very fast, Big Data, which deals with heterogeneous, large-scale, and 
stream data. Tsai et al. [10] give a comprehensive overview of tools and programming models 
such as MapReduce, Hadoop, Spark, Kafka, Cassandra, HBase, MongoDB, Mahout, HDFS, 
Lucene, Solr, Flume, and many more to solve issues posed by Big Data [10]. 

Hipi-Hadoop Image Processing Interface [11] is an image processing library that is developed 
to be used with Hadoop Map Reduced parallel processing framework. It can also be integrated 
with OpenCV to perform various image processing tasks in Hadoop Map to reduce the 
programming environment. Hipi programs takes a HIB (HipiImageBundle) file as input, which 
basically is a collection of multiple images that can be represented as a single image file in 
HDFS. Hipi provides multiple tools and classes for creating HIBs and then writing MapReduce 
tasks that apply image processing algorithms on HIB in parallel and store the results to HDFS. 
Helly et al. [12] have discussed many tools and technologies to perform distributed image 
processing on large scale image datasets. Authors have described how distributed image 
processing can be achieved using map-reduce programming architecture and showed the 
application of the Canny edge detection algorithm and K-means clustering algorithm on a large 
dataset of images in a distributed fashion. 

There have been efforts to use cloud architecture for per- forming video stream analysis. 
For example, in [7] Ashiq et al. proposed a cloud-based architecture to perform video stream 
analysis. Authors showed that how Map-reduce architecture integrated with the OpenCV 
image processing library can be used to perform image processing on a large number of images. 
The authors had also shown how the proposed architecture can achieve a significant speedup 
in performance when GPUs were used for processing. But the proposed architecture uses cloud 
architecture along with GPU assisted framework that in expensive and face network bottleneck.   
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 Researchers have used cloud computing to overcome scalability issues posed by 
traditional image processing techniques. For example, in [13] B. Iqbal et al. have proposed a 
cloud-based system for the line detection problem using canny edge detection and Hough 
transformation. Similarly, Yuzhong Yan and Lei Huang [14] also propose a cloud-based 
solution for large scale distributed image processing using the Apache Map-Reduce 
programming paradigm. In their work, authors have integrated the OpenCV image processing 
library with Hadoop architecture and provide their cloud-based solution as PaaS (Platform as 
a service) for image processing researchers. Authors have also shown the results of three 
famous image processing algorithms, namely Discrete Fourier Transform (DFT), face 
detection, and template matching to show their proposed architecture’s scalability and 
performance. 
 Similarly, Tingxi wen et al. [15] proposed a cloud-based medical image registration 
architecture that uses Spark dis- tributed architecture to accelerate medical image processing 
algorithms. In [16] authors have proposed an AI-based system for traffic video analysis to 
apply novel techniques like automated object detection, 3D reconstruction, and video tracking. 
 However, in such works, the cost factor and limitations of cloud architectures like 
security, outage, and network saturation have not been considered, and the use of commodity 
computers without cloud-based support is not addressed. 
 Researchers have made efforts to parallelize image processing tasks using the processing 
powers of GPUs. For example, Nan Zhang and et al. [17] have proposed a similar acceleration 
processing technique for image data using graphics processing units. The authors have 
introduced an efficient GPU architecture that gives improved computational efficiency 
compared to CPU. Similarly, other works such as [18] propose a Near- data-processing (NDP) 
architecture based on GPU power systems for image processing applications. 
 Most of these GPU based solutions for image processing cannot be deployed on 
commodity hardware. Moreover, although modern GPUs consist of many processing cores 
and are potentially expected to yield high performance for various applications, it is not easy 
to achieve ideal high throughput on such architectures as the cores of graphics processing units 
are grouped and data transfer among these cores is limited. Our work focuses on developing a 
scalable video analysis pipeline using open-source Big Data technologies on commodity 
computers to overcome cloud architecture’s financial constraints and issues. 

3. Methodology: Video Stream Analytics Data Pipeline 

 In this section, we give a detailed overview of our proposed methodology. Our suggested 
video stream analytic pipeline is illustrated in Fig. 1. In this technique, video analysis starts 
by extracting video frames from the various videos. These videos may come from many 
sources like websites, CCTV cameras, smartphones, and other video capturing devices. 
 In our proposed method to analyze every single frame of video for object detection, we 
introduce an integration of Apache Spark, Apache Kafka, and OpenCV that consists of the 
following steps: 
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Fig. 1. Proposed solution for video stream analytics. 

I.   After acquiring the target video, its frames are extracted with the help of a background 
process written in Java language and stored in a local database. 

II. Frames are then read from the disk and converted into corresponding strings to be 
transmitted to the Kafka messaging queue. The encoding and decoding are carried out with 
Xuggler [19] library that is a Java wrapper for FFmpeg [20]. We give a detailed explanation 
of this process in Section 3.1. 

III. After encoding video frames to strings, the Kafka producer starts publishing them to the 
Spark streaming application. Kafka cluster is built on commodity hardware with three 
computer systems. Kafka distributes the incoming encoded video frames among multiple 
topics inside the cluster for the Spark streaming application to subscribe and process them for 
face detection problem. 

IV. As soon as the video frames start getting published by the Kafka cluster, the Spark 
steaming consumer application running on a cluster of commodity computers starts to 
subscribe and apply the OpenCV face detection algorithm on them in parallel. 
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 The proposed video stream analytics pipeline reads the encoded video frames from the 
Kafka topics, decodes strings into OpenCV mat object, detects a face on mat objects, and stores 
processed video frames to the local database. Complete detail of each of these steps is given 
in the next subsections. 

3.1    Frame extraction and encoding 

 In our methodology, to start the analytics on a video stream, its frames need to be 
extracted and stored in a local database. This work has used a Java library named Xuggler for 
frame extraction and encoding that allows programmers to extract, encode, and decode media 
files directly from Java. Xuggler has been built around FFmpeg that is a C-based, 
comprehensive framework for media file manipulation. Compared to FFmpeg, Xuggler 
provides an object-oriented interface for video manipulation, and therefore, is easy to use. In 
our work, frames of different video formats took a varying amount of time to be extracted from 
video and stored in the local database. Table 1 shows the total number of frames and resolution 
of each video format used as the experimental dataset. 

Table 1. Experimental Datasets 
 

 
 

Video 1 
Kingsman: The Secret 

Service (2014) 

Video Resolution Frame rate  Total Frames 
1280 x 536  

 
25 FPS 

 
182,886 

 
 

704 x 480 
352 x 240 
176 x 120 

 
 

Video 2 
Casino Royale(2006) 

Video Resolution  
 

24 FPS 

Total Frames 
1920×1080  

 
207,360 

1280 x 720 
704 x 480 
352 x 240 
176 x 120 

 
Video 3 

Harry Potter and the 
Deathly Hallows – Part 

1 
(2010) 

Video Resolution  
 
 

24 FPS 

Total Frames 
1920×1080  

 
210,240 

 

1280 x 720 
704 x 480 
352 x 240 
176 x 120 

 

3.2    Kafka Producer 
Java process responsible for publishing messages to the Kafka cluster is known as Kafka 
producer. Once all the video frames have been extracted, the Kafka producer client starts 
transmitting them to the Kafka cluster. Each video frame is read from disk and encoded to 
Base64 string with Xuggler API for image encoding. This process is also known as 
serialization. Frames are encoded to Base64 strings to be disseminated through the topics 
inside the Kafka brokers distributed among the commodity hardware-based cluster. For each 
frame encoded in a string, an instance of Kafka producer is created with suitable properties. 
This instance of the Kafka producer dispatches the encoded frames to the Kafka cluster as a 
key-value pair. Having the topic offset as key and Base64 String encoded video frame as the 
value. Every Kafka producer can be configured with several properties suiting the scenario. A 
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few of those properties are listed as following: 
 

• Broker list is a comma-separated list of one or more Kafka brokers to which 
connection is to be established.  

  
• Acks property is the number of total acknowledgments that a producer requires from 

the leader of the Kafka cluster before considering a request complete. 
 

• Max.retries property is the total number of tries of sending a message to Kafka cluster 
before considering it a failure. 

 
• Retry.backoff is the amount of time, the Kafka producer waits before sending a failed 

message to Kafka brokers again. 
 
3.3     Kafka Brokers and Topics 
 

Each node in the Kafka cluster is known as a broker. Each instance of the producer 
application publishes video frames encoded in base64 string, to a single or various virtual 
partitions distributed among the brokers. These partitions, grouped together, are known as the 
Kafka topics. We have used a Kafka cluster with three brokers and a Kafka topic for each 
broker with three partitions in this work. As the partitions are distributed among the brokers, 
the consumer application can read the records simultaneously in parallel. This distributed 
message publishing and subscribing characteristic of Kafka is extremely useful in developing 
inexpensive, scalable systems for video analytics as the power of parallelization can easily be 
harnessed without expensive graphics processing units. Every record in a partition has a unique 
identifier called off-set. As soon as our Spark consumer application comes online, it starts 
subscribing to the records residing in the Kafka cluster. Details of the Spark Consumer 
application are given in the next section. 
 
3.4     Spark Consumer 
 

The final module of our proposed methodology is a Spark streaming application written 
in the Scala programming language. This Spark consumer application is responsible for the 
following tasks in our proposed data pipeline: 

i. Subscribing to Base64 encoded video frames residing in Kafka cluster. 
ii. Decoding and converting them to a Mat object. 
iii. Applying OpenCv’s face detection algorithm on individual Mat object 

representing a frame of video, in distributed fashion at different nodes of Spark 
cluster. 

iv. Storing the processed frames to local database.  
v. Recording the face detection results. 

 
A comprehensive detail of each part of Spark consumer application is given next. 
  
3.5     Kafka and Spark Streaming Integration 
 

Spark streaming application is integrated with Kafka to consume distributed records from 
the cluster. Kafka’s simple consumer API provides the interface for this integration. Spark 
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streaming processes the incoming data streams by converting them to resilient distributed 
datasets known as RDDs in the Spark programming environment. RDDs are the basic building 
blocks of any Spark processing consisting of immutable objects that can be partitioned and 
processed among multiple computers in the Spark clusters. There are two types of 
configurations for the Spark streaming application to receive data from the Kafka cluster. 
 

1. Receiver-based Approach. 
2. Direct Approach (No Receivers) 
In our work, we have opted for a direct approach to integrating Kafka with Spark 

Streaming due to its simple design and semantics. This direct approach automatically creates 
as many RDDs as there are Kafka topics partitions to be consumed. All these RDDs can read 
data from the Kafka topics in parallel, increasing parallelism’s simplicity in our application. 
There is a one-to-one mapping between Kafka partitions and Spark RDDs. 

When the Spark streaming application comes online, it starts reading video frames 
encoded to Base64 strings from distributed Kafka topics in parallel and creates RDDs for 
further processing. 
 
3.6     Face detection in Spark Streaming Application 
 

The records read from the Kafka partitions by the Spark streaming application and being 
represented by RDDs in the Spark programming environment are encoded strings that need to 
be converted back into an image format to apply image processing algorithms. The Spark 
consumer application converts these base64 encoded strings to byte arrays converted in 
OpenCV mat object in our proposed system. Then, the face detection algorithm is applied. We 
use OpenCV’s LBP Cascade Classifier for face detection. There are two types of cascade 
classifiers shipped with OpenCV library for face detection:  

 
1. Haar Cascade Classifier  
2. LBP Cascade Classifier 

 
We use LBP cascade Classifier for its efficiency and fast results. The Spark consumer 
application running on the Spark cluster processes all the records received from the Kafka 
topics in a distributed fashion and stores the resulting video frames in the storage of worker 
nodes, and records the number of faces detected in the experimental dataset. 
 

4. Experimental Evaluation & Results 

 This section gives a detailed overview of the experimental evaluation of our proposed 
data pipeline system for video analytic on commodity hardware using open-source Big Data 
technologies, namely Apache Spark, Apache Kafka, and OpenCV. Our experimental setup 
consisted of three commodity computers running Intel Core i7 microprocessor for the Spark 
cluster and three Core i7 Computers for the Kafka cluster. 
 In the Spark cluster, we had three worker nodes, running two executors, each with a ram 
of 5GB assigned to a single executor. Hence a total of 30GB of ram was assigned to three 
worker nodes. Similarly, in the Kafka cluster, we had three machines with 8GB of RAM. 
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For experimental evaluation, four different resolutions, namely HD, 4CIF, CIF, and QCIF, 

of the Hollywood movie "Kingsman: The Secret Service," having a frame rate of 25 frames 
per second, are used. Each video format had a varying frame size to pixel ratio, as illustrated 
in Fig. 3, and a total of 182,886 video frames for each format were extracted, and a face 
detection algorithm was applied on them to check the scalability and performance gain with 
varying number of nodes in Spark cluster. A detailed overview of the dataset is given in Table 
2. 

Table 2. Datasets used in Experimental Evaluation 

 
Video 1 

Kingsman: The 
Secret Service 

(2014) 

Format Resolution Number of 
Frames 

Total Size 
(GBs) 

HD 1280 x 536  
182,886 

136 
4CIF 704 x 480 69.2 
CIF 352 x 240 21.8 

QCIF 176 x 120 6.7 
 
 

Video 2 
Casino Royale 

(2006) 

Format Resolution Number of 
Frames 

Total Size 
(GBs) 

Full HD 1920×1080  
 

207,360 

197 
HD 1280 x 536 154 

4CIF 704 x 480 78.7 
CIF 352 x 240 26.4 

QCIF 176 x 120 8.2 
 

Video 3 
Harry Potter 

and the Deathly 
Hallows – Part 1 

(2010) 
 

Format Resolution Number of 
Frames 

Total Size 
(GBs) 

Full HD 1920×1080  
 

210,240 
 

200 
HD 1280 x 536 156 

4CIF 704 x 480 79.0 
CIF 352 x 240 27.8 

QCIF 176 x 120 8.9 
 

 Each individual frame’s average size varied from 80 KBS to 700 KB for different video 
formats; also, the total numbers of pixels in a frame play an important role in image processing 
tasks. The large frame size indicates a greater number of pixels and higher resolution in each 
frame of a specific format. The varying number of pixels had a direct impact on the face 
detection rate and speedup in our experimental evaluation. i.e., more faces were detected in a 
frame with a greater number of pixels as illustrated in Fig. 2, but it took more time to be 
processed as compared to the same frame of a lower resolution. Average frame size and total 
number of pixels in a single frame of each format are indicated by Fig. 3. 
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Fig. 2. Face detection: Higher resolution frames showed more face detection rate as compared to the 
frames of lower resolution. 

 
 

Fig. 3. Number of pixels and average frame size for different video resolutions. 
 

4.1 Experimental Details 

 To evaluate our proposed data pipeline, we performed different experiments. Table 3 
describes the experiments in detail. In this experimental evaluation of our methodology for 
video analytics, we have examined the speed up in the thorough put of our architecture by 
varying the number of Spark nodes for a specific frame resolution. The total number of frames 
processed in one single second represents the through- put of the system. And the time taken 
by the system to process a single frame will determine the overall latency. In our experiments, 
we checked the performance gain and speed up in overall system latency and throughput for 
each video format by varying the number of Spark nodes in the cluster. 
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Table 3. Experimental Details 

 

Experiment Description 

 
Experiment 01: Determining appropriate batch 
interval for Spark streaming. 

The number of frames processed per second was 
compared by varying the batch interval for Spark 
streaming from 0.5 sec to 20 sec. 
 

 
Experiment 02: Study of image processing 
pipeline performance. 

To determine the effect of scaling on 
performance of pipeline, we compared the frame 
processing rate by changing the Spark nodes in a 
cluster from 1 to 3. 

 
Experiment 03: Study of producer throughput. 
 

Comparison of time taken by Kafka producer to 
encode all frames of a specific resolution and 
send them to Kafka topics to be consumed by 
consumer application. 

 
We have used 182,886 frames of four different video formats in all experiments with 

a range of sizes from 6.7GB to 136GB. 
In the Experiment set 01, we performed a number of iterations of experiments to 

determine the appropriate batch interval for Spark streaming. The detail and significance of 
batch interval for Spark streaming applications are explained in section titled. Experiment 01: 
Determining the appropriate batch interval. 

In Experiment 02, we compare the time taken to process all video frames of a specific 
video resolution with an increasing number of Spark nodes and calculate the system’s 
performance gain throughout. The same phenomenon can also be viewed as a performance 
gain in system latency as in the same experiment; we also figured the time taken by the system 
to process a single frame of a specific resolution. We represented it as a performance gain in 
the system’s overall latency. 

And in the Experiment set 03, we studied the performance gain in Kafka producer 
throughput by comparing the time taken by the producer application to encode all the frames 
of different resolutions and transmit them to Kafka topics to be consumed by the Spark 
streaming application. 
 

4.2 Experimental Results 
Here, we explain and briefly describe the results of our experimental evaluation. As 

explained earlier, speed up means to increase a system’s performance compared to some other 
method, while both approaches are solving the same problem. Speed up can be measured in 
two ways: 

1. Throughput 
2. Latency 

 
Speed up in the throughput can be measured with the help of following formula: 

 

                                            Sthroughput = 𝑄𝑄2
𝑄𝑄1

    (1) 
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While, 
• Sthroughput is throughput of System 2 with respect to System 1. 
• Q1 throughput of System 1. 
• Q2 throughput of System 2. 

 Similarly speed up in latency of proposed system be measured with following formula: 

                                               Slatency = 𝐿𝐿2
𝐿𝐿1

                                         (2) 
 
While, 

• Slatency is latency of System 2 with respect to System 1. 
• L1 latency of System 1. 
• L2 latency of System 2. 

 

 

4.3 Experiment 01: Determining the appropriate batch interval 

 Batch interval plays an important role in any Spark streaming application. Batch interval 
is the configurable amount of time, after which Spark streaming creates a batch of incoming 
data and starts to process it on Spark nodes. Our experiments showed that varying batch 
interval had a direct impact on over- all system performance. We performed a number of 
experiments to check the system’s efficiency by changing the batch interval and selecting the 
interval at which the system performance was maximum. Choosing a very short batch interval 
caused the under-utilization of resources. Hence we increased the batch interval from 0.5 
seconds to 20 seconds and checked the number of frames processed per second. Fig. 4 
indicates that the batch interval of 10 seconds showed the maximum efficiency as the system 
showed the maximum throughput. The results show increasing batch interval directly impacted 
the number of frames processed per second, but there was no significant improvement in 
throughput after the batch interval of 10 seconds; hence a batch interval of 10 seconds was 
selected. 

 
 

Fig. 4. Experiment 01: Determining the appropriate batch interval. 
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4.4 Experiment 02: Study of image processing pipeline performance  
Here we explain the results of Experiment 02, where we study the speed up in 

throughput for each video resolution by varying the number of commodity computers in the 
Spark cluster. We have compared the time to process all 182, 886 frames of every video 
resolution and calculated the speed up in the system’s overall throughput with an increasing 
number of Spark nodes. Fig. 5 shows a speedup in frames processed per second for each video 
resolution.  

The graph indicates that for video frames having the highest resolution, i.e., of 
1280x536 pixels, we were able to process 28 frames per second when the Spark cluster 
consisted of a single worker node. When we increased the number of Spark nodes from 1 
computer to 2, we were able to process 49 frames per second, and finally, having 3 nodes in 
Spark clusters enabled us to process 59 frames per second for HD video resolution. 

Similarly, the speedup for 4CIF, second-highest resolution video format, is also shown 
as one Spark node-enabled us to process 54 frames per second while increasing the number of 
Spark nodes to 2 increased the system throughput to 93 frames per second and when a third 
Spark node was added to the cluster, we were able to process the frames at a rate of 102 frames 
per second. Fig. 5 also indicates the speed up in throughput for CIF video format having a 
resolution of 352x240, as the total number of video frames processed in a second with one 
Spark node in the cluster is 232. In comparison, throughput increased to 340 frames per second 
by increasing to Spark nodes to 2, and finally, with 3 Spark nodes, we were able to process 
365 frames per second, showing an increasing trend in throughput with a growing number for 
Spark nodes. QCIF format is the format having the lowest resolution of just 176x120 pixel per 
frames, and similarly having a single Spark node, we processed 357 frames per second for this 
video format, while increasing the Spark nodes from 1 to 2 increased the through- put to 380 
frames per second. And the addition of the 3rd node increased this processing rate to 395 
frames per second. 

 

 
Fig. 5. Experiment 02: Speedup in throughput for different video resolution with increasing 

number of Spark nodes in cluster. 
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Fig. 6 shows a speedup in the overall latency of the proposed system. It indicates that for 
HD video format time taken to process a single video frame was 35 millisecond when we had 
only one Spark node in the cluster, but this time decreased to 20 milliseconds when we 
increased the number of Spark nodes to 2 and similarly we were able to process a single frame 
of HD format in just 16 milliseconds when Spark cluster consisted on 3 nodes. Likewise, for 
4CIF video format, it took us 18.52 milliseconds to process a single frame when we had only 
one Spark node in the cluster, adding another node to the cluster decreased the time taken to 
process a single frame to 10.75 seconds and finally, the addition of a 3rd Spark node reduced 
the latency to 9.8 milliseconds. In the case of CIF video format, the time taken to process a 
single frame was calculated to be 4.31 milliseconds that decreased to 3 milliseconds when 2nd 
Spark node was added to the cluster, and the addition of the 3rd Spark node decreased the time 
to process a single frame to 2.74 milliseconds as shown in Fig. 6. In the case of QCIF video 
format, the time to process a single frame was calculated to be 2.8 milliseconds that was 
reduced to 2.63 milliseconds when a second Spark node was added to the cluster. Finally, the 
addition of a third Spark node reduces this time to 2.53 milliseconds. 

 
 
Fig. 6. Experiment 02: Speedup in system latency with increasing number of Spark nodes in 

cluster. 

4.5 Experiment 03: Speed up in throughput for frame production for different 
types of frame resolutions 

In this section, we explain the results of our third experiment in which we compared the 
number of frames encoded to string and sent to the Kafka cluster in a single second to be 
consumed by consumer application and calculated the speedup gained by changing the video 
resolution from HD to QCIF. It was observed that for higher resolutions having a large number 
of pixels, it took more time to encode them into strings and send them to the Kafka cluster 
compared to lower resolution formats. Fig. 7 shows that for HD video format having a 
resolution of 1280x536, we were able to achieve a sending rate of 71 frames per second. For 
4CIF video format having a resolution lesser resolution than HD, i.e., 704x480 pixels, this 
sending rate increased to 238 framed per second. For CIF format having a resolution of 
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352x240 pixels, this sending rate showed an increasing trend as we were able to encode and 
send video frames at a rate of 500 frames per second as shown in Fig. 7. Finally, for the video 
format having the lowest video resolution, this sending rate increased to 750 frames per second.  
 

 
Fig. 7. Experiment 03 (Speedup in throughput) results for video 1:   

 King’s man the Secret Service (2006) 
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Fig. 8. Experiment 03 (Speedup in throughput) results for video 2 
Casino Royale (2006) 
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Fig. 9. Experiment 03 (Speedup in throughput) results for video 3 
Harry Potter and the Deathly Hallows – Part 1 (2010) 

 
In Table 4, we summarize the experimental results for different video resolution, the 

number of nodes used, frames processes per second, throughput, and the total number of faces 
detected. 

 
Table 4. Experimental Summary 

 
Video 1 

Kingsman: The Secret Service (2014) 
 

Resolution  Number of Nodes Frames 
Processed  
per Second  

Producer 
Throughput (fps)  

Number of 
Faces Detected 

 
HD 

1280x536 

Stand Alone 3.6 -  
186,886 1 Spark Node 28             

71 2 Spark Node  49.8 
3 Spark Node  59.8 

 
4CF 

704x480 

Stand Alone 7 -  
86662 1 Spark Node 54             

238 2 Spark Node  93 
3 Spark Node  102 

 
CIF 

352 x 220 

Stand Alone 30 -  
39518 1 Spark Node 232             

500 2 Spark Node  340.9 
3 Spark Node  365.8 

 
QCIF 

176 x 120 

Stand Alone 128 -  
12922 1 Spark Node 357             

750 2 Spark Node  380 
3 Spark Node  395 

63.4 71
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Video 2 
Casino Royale (2006) 

 
Resolution  Number of Nodes Frames 

Processed  
per Second  

Producer 
Throughput (fps)  

Number of 
Faces Detected 

 
Full HD 

1920×1080 

Stand Alone 2.2 -  
218,790 1 Spark Node 22  

63.8 2 Spark Node  36 
3 Spark Node  47 

 
HD 

1280x536 

Stand Alone 3.6 -  
186,886 1 Spark Node 28             

70 2 Spark Node  49.8 
3 Spark Node  59.8 

 
4CF 

704x480 

Stand Alone 7 -  
86662 1 Spark Node 54             

248 2 Spark Node  93 
3 Spark Node  102 

 
CIF 

352 x 220 

Stand Alone 30 -  
39518 1 Spark Node 232              

580 2 Spark Node  340.9 
3 Spark Node  365.8 

 
 

QCIF 
176 x 120 

 
Stand Alone 

 
128 

 
- 

 
12922 

1 Spark Node 357           
850 2 Spark Node  380 

3 Spark Node  395 
 

Video 3 
Harry Potter and the Deathly Hallows – Part 1 (2010) 

 
Resolution  Number of Nodes Frames 

Processed  
per Second  

Producer 
Throughput (fps)  

Number of 
Faces Detected 

 
 

Full HD 
1920×1080 

Stand Alone 2 -  
219,580 1 Spark Node 22  

63.4 2 Spark Node  36 
3 Spark Node  47 

 
HD 

1280x536 

Stand Alone 3.6 -  
186,886 1 Spark Node 28             

71 2 Spark Node  49.8 
3 Spark Node  59.8 

4CIF 
704x480 

Stand Alone 7 -  
86662 1 Spark Node 54             

238 2 Spark Node  93 
3 Spark Node  102 

 
CIF 

352 x 220 

Stand Alone 30 -  
39518 1 Spark Node 232              

500 2 Spark Node  340.9 
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3 Spark Node  365.8 
 

QCIF 
176 x 120 

Stand Alone 128 -  
12922 1 Spark Node 357             

740 2 Spark Node  380 
3 Spark Node  395 

5. Conclusion and Future Work 
This paper proposed a system to develop a scalable, low-cost video analytic data 

pipeline by using open-source Big Data technologies on commodity hardware and evaluating 
our work by performing various experiments. Our solution integrates the OpenCV library with 
Apache Spark and Kafka and provides good scalability on the commodity hardware. Our 
approach eliminates the need for using expensive GPU-based hardware and cloud computing 
infrastructure for face detection video analytics. Our evaluation shows that increasing the 
Spark nodes in the Spark cluster increased the system’s throughput. Although there is an 
appropriate batch interval to increase the number of frames processed per second, but this 
increase in throughput is limited by an upper limit on batch interval. We also concluded that 
for higher resolution images, the face detection algorithm’s performance was better compared 
to images of lower resolution. In the future, we intend to develop a dynamic resource allocation 
algorithm for Spark and Kafka to increase or decrease the available resources depending on 
the demand for video streams. 
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