
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 16, NO. 4, Apr. 2022 1146
Copyright ⓒ 2022 KSII

http://doi.org/10.3837/tiis.2022.04.004 ISSN : 1976-7277

Scalable Big Data Pipeline for Video
Stream Analytics Over Commodity

Hardware

Umer Ayub1, Syed M. Ahsan1*, and Shavez M. Qureshi1*
1 Department of Computer Science, Qarshi University

Lahore, Pakistan
[e-mail : umer.ayub@qu.edu.pk; syed.ahsan@qu.edu.pk; shavez.mushtaq@qu.edu.pk]

*Corresponding authors: Syed M. Ahsan, Shavez M. Qureshi

Received October 8, 2021; revised December 23, 2021; accepted February 9, 2022;
published April 30, 2022

Abstract

A huge amount of data in the form of videos and images is being produced owning to
advancements in sensor technology. Use of low performance commodity hardware coupled
with resource heavy image processing and analyzing approaches to infer and extract actionable
insights from this data poses a bottleneck for timely decision making. Current approach of
GPU assisted and cloud-based architecture video analysis techniques give significant
performance gain, but its usage is constrained by financial considerations and extremely
complex architecture level details. In this paper we propose a data pipeline system that uses
open-source tools such as Apache Spark, Kafka and OpenCV running over commodity
hardware for video stream processing and image processing in a distributed environment.
Experimental results show that our proposed approach eliminates the need of GPU based
hardware and cloud computing infrastructure to achieve efficient video steam processing for
face detection with increased throughput, scalability and better performance.

Keywords: Video Analytics, Big Data, Data Pipeline, Spark, Kafka, OpenCV

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 16, NO. 4, April 2022 1147

1. Introduction

Recent advancement of technology has increased the amount of digital data produced every
single day. Most digital data is produced by social media websites, digital video cameras,
mobile devices, and various sensors connected to the Inter- net. A huge amount of this data is
in the form of images and videos, providing actionable insights for businesses and individuals.
Moreover, the ubiquitous deployment of cheap and readily available video cameras for
security and surveillance has increased the demand for digital video stream processing and
analytics [1, 2]. Traditionally the video streams are analyzed manually with the help of human
operators. Depending upon the requirements, the stored video streams are viewed one by one,
and the desired information is extracted. The manual inspection of video data is a time-
consuming process, and human error chances are always imminent [3].

The advancement in image processing and computer vision has introduced various new
paradigms for automated information extraction from images and videos. Object detection is
an essential application of this field that serves as the foundation of numerous other video
analytics types. Scientists have developed algorithms to classify and identify objects of interest
from video without any human intervention. But the video data generated from surveillance
cameras and other sources are usually massive and introduce significant challenges in
analyzing and performing desired image processing operations as these algorithms are already
in their nature are extremely resource-consuming [4, 5]. Therefore one of the dominant
bottlenecks remains the automation of video stream processing as frame by frame video
analysis requires a considerable amount of computing, network, and storage resources.

Existing solutions providing video analytics overcome this problem using expensive
hardware such as Graphics Processing Units [6] and expensive cloud-based architectures that
harness the power of multiple computing resources as a single unit [7]. GPU assisted video
analysis techniques generally parallelize image processing tasks; therefore, significant
performance gain has been observed by deploying video analytic architectures on top of GPU
assisted hardware. But such hardware is usually constrained to financial limitations and
extremely complex architecture level details. Similarly, there have been efforts to use cloud
computing power to dissipate resource extensive, image processing tasks over multiple
machines. Although cloud-based image processing systems have also shown promising results,
such architectures are still constrained to security, outage, and cost. Current research in the
Big Data field provides us open-source tools that can be used with commodity hardware to
process a large amount of data efficiently. There is a need for a system that can harness the
power of these Big Data technologies for video analytics to overcome the financial and
security constraints that organizations and researchers have to face while opting for GPUs and
cloud-based architectures.

In this paper, we proposed and evaluated a data pipeline system for processing video
streams using open-source tools, namely Apache Spark [8], Kafka [9], and OpenCV, a well-
known image processing library. Our proposed video analysis pipeline consists of three basic
modules. The first module is responsible for frame extraction and their encoding to strings so
that these frames can be transmitted to the messaging queue. In our second module, we used
Kafka, an open-source message publishing framework, as a messaging queue that works as
the Apache Spark streaming data source. The third part of our proposed pipeline is the Spark
streaming application that runs on a cluster of commodity computers to apply the OpenCV
algorithm on video frames in a distributed fashion and then stores the output in a database.

Our experimental evaluation shows the proposed video stream analytics pipeline’s
scalability and performance using different cluster sizes based on commodity machines for the

1148 Ayub et al.: Scalable Big Data Pipeline for Video Stream Analytics Over Commodity Hardware

face detection task. The main contributions of this paper include:

i. Propose a video analytics pipeline using open-source big data tools that run over
commodity hardware for efficient video stream processing.

ii. Integration of OpenCV image processing library with Apache Spark to simplify
image processing in a distributed environment.

iii. Evaluate the proposed pipeline for face detection task using different video
formats.

iv. Evaluate the Kafka producer throughput for varying image resolutions.
v. Evaluation of the proposed pipeline for scalability and performance using

different cluster sizes built using commodity machines.

The rest of the paper is organized as follows. The related work is presented in Section II.

In section III, we describe in detail our proposed methodology. Experimental results and
performance evaluation of the video analysis pipeline is presented in Section IV. And in
Section V, the conclusions and future direction of our work is discussed.

2. Related Work

 The amount of video and image data being generated has increased to a tremendous
amount. Not only that, manual inspection of these video streams has become impractical, but
also, the commodity systems with single CPU computational power cannot process it
efficiently. To overcome the challenges caused by the vast amount of data, a new technological
domain is developing very fast, Big Data, which deals with heterogeneous, large-scale, and
stream data. Tsai et al. [10] give a comprehensive overview of tools and programming models
such as MapReduce, Hadoop, Spark, Kafka, Cassandra, HBase, MongoDB, Mahout, HDFS,
Lucene, Solr, Flume, and many more to solve issues posed by Big Data [10].

Hipi-Hadoop Image Processing Interface [11] is an image processing library that is developed
to be used with Hadoop Map Reduced parallel processing framework. It can also be integrated
with OpenCV to perform various image processing tasks in Hadoop Map to reduce the
programming environment. Hipi programs takes a HIB (HipiImageBundle) file as input, which
basically is a collection of multiple images that can be represented as a single image file in
HDFS. Hipi provides multiple tools and classes for creating HIBs and then writing MapReduce
tasks that apply image processing algorithms on HIB in parallel and store the results to HDFS.
Helly et al. [12] have discussed many tools and technologies to perform distributed image
processing on large scale image datasets. Authors have described how distributed image
processing can be achieved using map-reduce programming architecture and showed the
application of the Canny edge detection algorithm and K-means clustering algorithm on a large
dataset of images in a distributed fashion.

There have been efforts to use cloud architecture for per- forming video stream analysis.
For example, in [7] Ashiq et al. proposed a cloud-based architecture to perform video stream
analysis. Authors showed that how Map-reduce architecture integrated with the OpenCV
image processing library can be used to perform image processing on a large number of images.
The authors had also shown how the proposed architecture can achieve a significant speedup
in performance when GPUs were used for processing. But the proposed architecture uses cloud
architecture along with GPU assisted framework that in expensive and face network bottleneck.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 16, NO. 4, April 2022 1149

 Researchers have used cloud computing to overcome scalability issues posed by
traditional image processing techniques. For example, in [13] B. Iqbal et al. have proposed a
cloud-based system for the line detection problem using canny edge detection and Hough
transformation. Similarly, Yuzhong Yan and Lei Huang [14] also propose a cloud-based
solution for large scale distributed image processing using the Apache Map-Reduce
programming paradigm. In their work, authors have integrated the OpenCV image processing
library with Hadoop architecture and provide their cloud-based solution as PaaS (Platform as
a service) for image processing researchers. Authors have also shown the results of three
famous image processing algorithms, namely Discrete Fourier Transform (DFT), face
detection, and template matching to show their proposed architecture’s scalability and
performance.
 Similarly, Tingxi wen et al. [15] proposed a cloud-based medical image registration
architecture that uses Spark dis- tributed architecture to accelerate medical image processing
algorithms. In [16] authors have proposed an AI-based system for traffic video analysis to
apply novel techniques like automated object detection, 3D reconstruction, and video tracking.
 However, in such works, the cost factor and limitations of cloud architectures like
security, outage, and network saturation have not been considered, and the use of commodity
computers without cloud-based support is not addressed.
 Researchers have made efforts to parallelize image processing tasks using the processing
powers of GPUs. For example, Nan Zhang and et al. [17] have proposed a similar acceleration
processing technique for image data using graphics processing units. The authors have
introduced an efficient GPU architecture that gives improved computational efficiency
compared to CPU. Similarly, other works such as [18] propose a Near- data-processing (NDP)
architecture based on GPU power systems for image processing applications.
 Most of these GPU based solutions for image processing cannot be deployed on
commodity hardware. Moreover, although modern GPUs consist of many processing cores
and are potentially expected to yield high performance for various applications, it is not easy
to achieve ideal high throughput on such architectures as the cores of graphics processing units
are grouped and data transfer among these cores is limited. Our work focuses on developing a
scalable video analysis pipeline using open-source Big Data technologies on commodity
computers to overcome cloud architecture’s financial constraints and issues.

3. Methodology: Video Stream Analytics Data Pipeline

 In this section, we give a detailed overview of our proposed methodology. Our suggested
video stream analytic pipeline is illustrated in Fig. 1. In this technique, video analysis starts
by extracting video frames from the various videos. These videos may come from many
sources like websites, CCTV cameras, smartphones, and other video capturing devices.
 In our proposed method to analyze every single frame of video for object detection, we
introduce an integration of Apache Spark, Apache Kafka, and OpenCV that consists of the
following steps:

1150 Ayub et al.: Scalable Big Data Pipeline for Video Stream Analytics Over Commodity Hardware

Fig. 1. Proposed solution for video stream analytics.

I. After acquiring the target video, its frames are extracted with the help of a background
process written in Java language and stored in a local database.

II. Frames are then read from the disk and converted into corresponding strings to be
transmitted to the Kafka messaging queue. The encoding and decoding are carried out with
Xuggler [19] library that is a Java wrapper for FFmpeg [20]. We give a detailed explanation
of this process in Section 3.1.

III. After encoding video frames to strings, the Kafka producer starts publishing them to the
Spark streaming application. Kafka cluster is built on commodity hardware with three
computer systems. Kafka distributes the incoming encoded video frames among multiple
topics inside the cluster for the Spark streaming application to subscribe and process them for
face detection problem.

IV. As soon as the video frames start getting published by the Kafka cluster, the Spark
steaming consumer application running on a cluster of commodity computers starts to
subscribe and apply the OpenCV face detection algorithm on them in parallel.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 16, NO. 4, April 2022 1151

 The proposed video stream analytics pipeline reads the encoded video frames from the
Kafka topics, decodes strings into OpenCV mat object, detects a face on mat objects, and stores
processed video frames to the local database. Complete detail of each of these steps is given
in the next subsections.

3.1 Frame extraction and encoding

 In our methodology, to start the analytics on a video stream, its frames need to be
extracted and stored in a local database. This work has used a Java library named Xuggler for
frame extraction and encoding that allows programmers to extract, encode, and decode media
files directly from Java. Xuggler has been built around FFmpeg that is a C-based,
comprehensive framework for media file manipulation. Compared to FFmpeg, Xuggler
provides an object-oriented interface for video manipulation, and therefore, is easy to use. In
our work, frames of different video formats took a varying amount of time to be extracted from
video and stored in the local database. Table 1 shows the total number of frames and resolution
of each video format used as the experimental dataset.

Table 1. Experimental Datasets

Video 1
Kingsman: The Secret

Service (2014)

Video Resolution Frame rate Total Frames
1280 x 536

25 FPS

182,886

704 x 480
352 x 240
176 x 120

Video 2
Casino Royale(2006)

Video Resolution

24 FPS

Total Frames
1920×1080

207,360

1280 x 720
704 x 480
352 x 240
176 x 120

Video 3

Harry Potter and the
Deathly Hallows – Part

1
(2010)

Video Resolution

24 FPS

Total Frames
1920×1080

210,240

1280 x 720
704 x 480
352 x 240
176 x 120

3.2 Kafka Producer
Java process responsible for publishing messages to the Kafka cluster is known as Kafka
producer. Once all the video frames have been extracted, the Kafka producer client starts
transmitting them to the Kafka cluster. Each video frame is read from disk and encoded to
Base64 string with Xuggler API for image encoding. This process is also known as
serialization. Frames are encoded to Base64 strings to be disseminated through the topics
inside the Kafka brokers distributed among the commodity hardware-based cluster. For each
frame encoded in a string, an instance of Kafka producer is created with suitable properties.
This instance of the Kafka producer dispatches the encoded frames to the Kafka cluster as a
key-value pair. Having the topic offset as key and Base64 String encoded video frame as the
value. Every Kafka producer can be configured with several properties suiting the scenario. A

1152 Ayub et al.: Scalable Big Data Pipeline for Video Stream Analytics Over Commodity Hardware

few of those properties are listed as following:

• Broker list is a comma-separated list of one or more Kafka brokers to which
connection is to be established.

• Acks property is the number of total acknowledgments that a producer requires from

the leader of the Kafka cluster before considering a request complete.

• Max.retries property is the total number of tries of sending a message to Kafka cluster
before considering it a failure.

• Retry.backoff is the amount of time, the Kafka producer waits before sending a failed

message to Kafka brokers again.

3.3 Kafka Brokers and Topics

Each node in the Kafka cluster is known as a broker. Each instance of the producer
application publishes video frames encoded in base64 string, to a single or various virtual
partitions distributed among the brokers. These partitions, grouped together, are known as the
Kafka topics. We have used a Kafka cluster with three brokers and a Kafka topic for each
broker with three partitions in this work. As the partitions are distributed among the brokers,
the consumer application can read the records simultaneously in parallel. This distributed
message publishing and subscribing characteristic of Kafka is extremely useful in developing
inexpensive, scalable systems for video analytics as the power of parallelization can easily be
harnessed without expensive graphics processing units. Every record in a partition has a unique
identifier called off-set. As soon as our Spark consumer application comes online, it starts
subscribing to the records residing in the Kafka cluster. Details of the Spark Consumer
application are given in the next section.

3.4 Spark Consumer

The final module of our proposed methodology is a Spark streaming application written
in the Scala programming language. This Spark consumer application is responsible for the
following tasks in our proposed data pipeline:

i. Subscribing to Base64 encoded video frames residing in Kafka cluster.
ii. Decoding and converting them to a Mat object.
iii. Applying OpenCv’s face detection algorithm on individual Mat object

representing a frame of video, in distributed fashion at different nodes of Spark
cluster.

iv. Storing the processed frames to local database.
v. Recording the face detection results.

A comprehensive detail of each part of Spark consumer application is given next.

3.5 Kafka and Spark Streaming Integration

Spark streaming application is integrated with Kafka to consume distributed records from
the cluster. Kafka’s simple consumer API provides the interface for this integration. Spark

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 16, NO. 4, April 2022 1153

streaming processes the incoming data streams by converting them to resilient distributed
datasets known as RDDs in the Spark programming environment. RDDs are the basic building
blocks of any Spark processing consisting of immutable objects that can be partitioned and
processed among multiple computers in the Spark clusters. There are two types of
configurations for the Spark streaming application to receive data from the Kafka cluster.

1. Receiver-based Approach.
2. Direct Approach (No Receivers)
In our work, we have opted for a direct approach to integrating Kafka with Spark

Streaming due to its simple design and semantics. This direct approach automatically creates
as many RDDs as there are Kafka topics partitions to be consumed. All these RDDs can read
data from the Kafka topics in parallel, increasing parallelism’s simplicity in our application.
There is a one-to-one mapping between Kafka partitions and Spark RDDs.

When the Spark streaming application comes online, it starts reading video frames
encoded to Base64 strings from distributed Kafka topics in parallel and creates RDDs for
further processing.

3.6 Face detection in Spark Streaming Application

The records read from the Kafka partitions by the Spark streaming application and being
represented by RDDs in the Spark programming environment are encoded strings that need to
be converted back into an image format to apply image processing algorithms. The Spark
consumer application converts these base64 encoded strings to byte arrays converted in
OpenCV mat object in our proposed system. Then, the face detection algorithm is applied. We
use OpenCV’s LBP Cascade Classifier for face detection. There are two types of cascade
classifiers shipped with OpenCV library for face detection:

1. Haar Cascade Classifier
2. LBP Cascade Classifier

We use LBP cascade Classifier for its efficiency and fast results. The Spark consumer
application running on the Spark cluster processes all the records received from the Kafka
topics in a distributed fashion and stores the resulting video frames in the storage of worker
nodes, and records the number of faces detected in the experimental dataset.

4. Experimental Evaluation & Results

 This section gives a detailed overview of the experimental evaluation of our proposed
data pipeline system for video analytic on commodity hardware using open-source Big Data
technologies, namely Apache Spark, Apache Kafka, and OpenCV. Our experimental setup
consisted of three commodity computers running Intel Core i7 microprocessor for the Spark
cluster and three Core i7 Computers for the Kafka cluster.
 In the Spark cluster, we had three worker nodes, running two executors, each with a ram
of 5GB assigned to a single executor. Hence a total of 30GB of ram was assigned to three
worker nodes. Similarly, in the Kafka cluster, we had three machines with 8GB of RAM.

1154 Ayub et al.: Scalable Big Data Pipeline for Video Stream Analytics Over Commodity Hardware

For experimental evaluation, four different resolutions, namely HD, 4CIF, CIF, and QCIF,

of the Hollywood movie "Kingsman: The Secret Service," having a frame rate of 25 frames
per second, are used. Each video format had a varying frame size to pixel ratio, as illustrated
in Fig. 3, and a total of 182,886 video frames for each format were extracted, and a face
detection algorithm was applied on them to check the scalability and performance gain with
varying number of nodes in Spark cluster. A detailed overview of the dataset is given in Table
2.

Table 2. Datasets used in Experimental Evaluation

Video 1

Kingsman: The
Secret Service

(2014)

Format Resolution Number of
Frames

Total Size
(GBs)

HD 1280 x 536
182,886

136
4CIF 704 x 480 69.2
CIF 352 x 240 21.8

QCIF 176 x 120 6.7

Video 2
Casino Royale

(2006)

Format Resolution Number of
Frames

Total Size
(GBs)

Full HD 1920×1080

207,360

197
HD 1280 x 536 154

4CIF 704 x 480 78.7
CIF 352 x 240 26.4

QCIF 176 x 120 8.2

Video 3
Harry Potter

and the Deathly
Hallows – Part 1

(2010)

Format Resolution Number of
Frames

Total Size
(GBs)

Full HD 1920×1080

210,240

200
HD 1280 x 536 156

4CIF 704 x 480 79.0
CIF 352 x 240 27.8

QCIF 176 x 120 8.9

 Each individual frame’s average size varied from 80 KBS to 700 KB for different video
formats; also, the total numbers of pixels in a frame play an important role in image processing
tasks. The large frame size indicates a greater number of pixels and higher resolution in each
frame of a specific format. The varying number of pixels had a direct impact on the face
detection rate and speedup in our experimental evaluation. i.e., more faces were detected in a
frame with a greater number of pixels as illustrated in Fig. 2, but it took more time to be
processed as compared to the same frame of a lower resolution. Average frame size and total
number of pixels in a single frame of each format are indicated by Fig. 3.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 16, NO. 4, April 2022 1155

Fig. 2. Face detection: Higher resolution frames showed more face detection rate as compared to the
frames of lower resolution.

Fig. 3. Number of pixels and average frame size for different video resolutions.

4.1 Experimental Details

 To evaluate our proposed data pipeline, we performed different experiments. Table 3
describes the experiments in detail. In this experimental evaluation of our methodology for
video analytics, we have examined the speed up in the thorough put of our architecture by
varying the number of Spark nodes for a specific frame resolution. The total number of frames
processed in one single second represents the through- put of the system. And the time taken
by the system to process a single frame will determine the overall latency. In our experiments,
we checked the performance gain and speed up in overall system latency and throughput for
each video format by varying the number of Spark nodes in the cluster.

1156 Ayub et al.: Scalable Big Data Pipeline for Video Stream Analytics Over Commodity Hardware

Table 3. Experimental Details

Experiment Description

Experiment 01: Determining appropriate batch
interval for Spark streaming.

The number of frames processed per second was
compared by varying the batch interval for Spark
streaming from 0.5 sec to 20 sec.

Experiment 02: Study of image processing
pipeline performance.

To determine the effect of scaling on
performance of pipeline, we compared the frame
processing rate by changing the Spark nodes in a
cluster from 1 to 3.

Experiment 03: Study of producer throughput.

Comparison of time taken by Kafka producer to
encode all frames of a specific resolution and
send them to Kafka topics to be consumed by
consumer application.

We have used 182,886 frames of four different video formats in all experiments with

a range of sizes from 6.7GB to 136GB.
In the Experiment set 01, we performed a number of iterations of experiments to

determine the appropriate batch interval for Spark streaming. The detail and significance of
batch interval for Spark streaming applications are explained in section titled. Experiment 01:
Determining the appropriate batch interval.

In Experiment 02, we compare the time taken to process all video frames of a specific
video resolution with an increasing number of Spark nodes and calculate the system’s
performance gain throughout. The same phenomenon can also be viewed as a performance
gain in system latency as in the same experiment; we also figured the time taken by the system
to process a single frame of a specific resolution. We represented it as a performance gain in
the system’s overall latency.

And in the Experiment set 03, we studied the performance gain in Kafka producer
throughput by comparing the time taken by the producer application to encode all the frames
of different resolutions and transmit them to Kafka topics to be consumed by the Spark
streaming application.

4.2 Experimental Results
Here, we explain and briefly describe the results of our experimental evaluation. As

explained earlier, speed up means to increase a system’s performance compared to some other
method, while both approaches are solving the same problem. Speed up can be measured in
two ways:

1. Throughput
2. Latency

Speed up in the throughput can be measured with the help of following formula:

 Sthroughput = 𝑄𝑄2
𝑄𝑄1

 (1)

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 16, NO. 4, April 2022 1157

While,
• Sthroughput is throughput of System 2 with respect to System 1.
• Q1 throughput of System 1.
• Q2 throughput of System 2.

 Similarly speed up in latency of proposed system be measured with following formula:

 Slatency = 𝐿𝐿2
𝐿𝐿1

 (2)

While,

• Slatency is latency of System 2 with respect to System 1.
• L1 latency of System 1.
• L2 latency of System 2.

4.3 Experiment 01: Determining the appropriate batch interval

 Batch interval plays an important role in any Spark streaming application. Batch interval
is the configurable amount of time, after which Spark streaming creates a batch of incoming
data and starts to process it on Spark nodes. Our experiments showed that varying batch
interval had a direct impact on over- all system performance. We performed a number of
experiments to check the system’s efficiency by changing the batch interval and selecting the
interval at which the system performance was maximum. Choosing a very short batch interval
caused the under-utilization of resources. Hence we increased the batch interval from 0.5
seconds to 20 seconds and checked the number of frames processed per second. Fig. 4
indicates that the batch interval of 10 seconds showed the maximum efficiency as the system
showed the maximum throughput. The results show increasing batch interval directly impacted
the number of frames processed per second, but there was no significant improvement in
throughput after the batch interval of 10 seconds; hence a batch interval of 10 seconds was
selected.

Fig. 4. Experiment 01: Determining the appropriate batch interval.

1158 Ayub et al.: Scalable Big Data Pipeline for Video Stream Analytics Over Commodity Hardware

4.4 Experiment 02: Study of image processing pipeline performance
Here we explain the results of Experiment 02, where we study the speed up in

throughput for each video resolution by varying the number of commodity computers in the
Spark cluster. We have compared the time to process all 182, 886 frames of every video
resolution and calculated the speed up in the system’s overall throughput with an increasing
number of Spark nodes. Fig. 5 shows a speedup in frames processed per second for each video
resolution.

The graph indicates that for video frames having the highest resolution, i.e., of
1280x536 pixels, we were able to process 28 frames per second when the Spark cluster
consisted of a single worker node. When we increased the number of Spark nodes from 1
computer to 2, we were able to process 49 frames per second, and finally, having 3 nodes in
Spark clusters enabled us to process 59 frames per second for HD video resolution.

Similarly, the speedup for 4CIF, second-highest resolution video format, is also shown
as one Spark node-enabled us to process 54 frames per second while increasing the number of
Spark nodes to 2 increased the system throughput to 93 frames per second and when a third
Spark node was added to the cluster, we were able to process the frames at a rate of 102 frames
per second. Fig. 5 also indicates the speed up in throughput for CIF video format having a
resolution of 352x240, as the total number of video frames processed in a second with one
Spark node in the cluster is 232. In comparison, throughput increased to 340 frames per second
by increasing to Spark nodes to 2, and finally, with 3 Spark nodes, we were able to process
365 frames per second, showing an increasing trend in throughput with a growing number for
Spark nodes. QCIF format is the format having the lowest resolution of just 176x120 pixel per
frames, and similarly having a single Spark node, we processed 357 frames per second for this
video format, while increasing the Spark nodes from 1 to 2 increased the through- put to 380
frames per second. And the addition of the 3rd node increased this processing rate to 395
frames per second.

Fig. 5. Experiment 02: Speedup in throughput for different video resolution with increasing

number of Spark nodes in cluster.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 16, NO. 4, April 2022 1159

Fig. 6 shows a speedup in the overall latency of the proposed system. It indicates that for
HD video format time taken to process a single video frame was 35 millisecond when we had
only one Spark node in the cluster, but this time decreased to 20 milliseconds when we
increased the number of Spark nodes to 2 and similarly we were able to process a single frame
of HD format in just 16 milliseconds when Spark cluster consisted on 3 nodes. Likewise, for
4CIF video format, it took us 18.52 milliseconds to process a single frame when we had only
one Spark node in the cluster, adding another node to the cluster decreased the time taken to
process a single frame to 10.75 seconds and finally, the addition of a 3rd Spark node reduced
the latency to 9.8 milliseconds. In the case of CIF video format, the time taken to process a
single frame was calculated to be 4.31 milliseconds that decreased to 3 milliseconds when 2nd
Spark node was added to the cluster, and the addition of the 3rd Spark node decreased the time
to process a single frame to 2.74 milliseconds as shown in Fig. 6. In the case of QCIF video
format, the time to process a single frame was calculated to be 2.8 milliseconds that was
reduced to 2.63 milliseconds when a second Spark node was added to the cluster. Finally, the
addition of a third Spark node reduces this time to 2.53 milliseconds.

Fig. 6. Experiment 02: Speedup in system latency with increasing number of Spark nodes in

cluster.

4.5 Experiment 03: Speed up in throughput for frame production for different
types of frame resolutions

In this section, we explain the results of our third experiment in which we compared the
number of frames encoded to string and sent to the Kafka cluster in a single second to be
consumed by consumer application and calculated the speedup gained by changing the video
resolution from HD to QCIF. It was observed that for higher resolutions having a large number
of pixels, it took more time to encode them into strings and send them to the Kafka cluster
compared to lower resolution formats. Fig. 7 shows that for HD video format having a
resolution of 1280x536, we were able to achieve a sending rate of 71 frames per second. For
4CIF video format having a resolution lesser resolution than HD, i.e., 704x480 pixels, this
sending rate increased to 238 framed per second. For CIF format having a resolution of

1160 Ayub et al.: Scalable Big Data Pipeline for Video Stream Analytics Over Commodity Hardware

352x240 pixels, this sending rate showed an increasing trend as we were able to encode and
send video frames at a rate of 500 frames per second as shown in Fig. 7. Finally, for the video
format having the lowest video resolution, this sending rate increased to 750 frames per second.

Fig. 7. Experiment 03 (Speedup in throughput) results for video 1:

 King’s man the Secret Service (2006)

.

Fig. 8. Experiment 03 (Speedup in throughput) results for video 2
Casino Royale (2006)

71

238

500

740

0

100

200

300

400

500

600

700

800

HD 4CIF CIF QCIF

Producer Throughput for video 1

Frames Encoded and Sent to Kafka Producer per
second

63.8 70

248

580

850

0

100

200

300

400

500

600

700

800

900

Full HD HD 4CIF CIF QCIF

Producer Throughput for video 2

Frames Encoded and Sent to Kafka Producer per second

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 16, NO. 4, April 2022 1161

Fig. 9. Experiment 03 (Speedup in throughput) results for video 3
Harry Potter and the Deathly Hallows – Part 1 (2010)

In Table 4, we summarize the experimental results for different video resolution, the

number of nodes used, frames processes per second, throughput, and the total number of faces
detected.

Table 4. Experimental Summary

Video 1

Kingsman: The Secret Service (2014)

Resolution Number of Nodes Frames
Processed
per Second

Producer
Throughput (fps)

Number of
Faces Detected

HD

1280x536

Stand Alone 3.6 -
186,886 1 Spark Node 28

71 2 Spark Node 49.8
3 Spark Node 59.8

4CF

704x480

Stand Alone 7 -
86662 1 Spark Node 54

238 2 Spark Node 93
3 Spark Node 102

CIF

352 x 220

Stand Alone 30 -
39518 1 Spark Node 232

500 2 Spark Node 340.9
3 Spark Node 365.8

QCIF

176 x 120

Stand Alone 128 -
12922 1 Spark Node 357

750 2 Spark Node 380
3 Spark Node 395

63.4 71

238

500

740

0

100

200

300

400

500

600

700

800

Full HD HD 4CIF CIF QCIF

Producer Throughput for video 3

Frames Encoded and Sent to Kafka Producer per second

1162 Ayub et al.: Scalable Big Data Pipeline for Video Stream Analytics Over Commodity Hardware

Video 2
Casino Royale (2006)

Resolution Number of Nodes Frames

Processed
per Second

Producer
Throughput (fps)

Number of
Faces Detected

Full HD

1920×1080

Stand Alone 2.2 -
218,790 1 Spark Node 22

63.8 2 Spark Node 36
3 Spark Node 47

HD

1280x536

Stand Alone 3.6 -
186,886 1 Spark Node 28

70 2 Spark Node 49.8
3 Spark Node 59.8

4CF

704x480

Stand Alone 7 -
86662 1 Spark Node 54

248 2 Spark Node 93
3 Spark Node 102

CIF

352 x 220

Stand Alone 30 -
39518 1 Spark Node 232

580 2 Spark Node 340.9
3 Spark Node 365.8

QCIF
176 x 120

Stand Alone

128

-

12922

1 Spark Node 357
850 2 Spark Node 380

3 Spark Node 395

Video 3
Harry Potter and the Deathly Hallows – Part 1 (2010)

Resolution Number of Nodes Frames

Processed
per Second

Producer
Throughput (fps)

Number of
Faces Detected

Full HD
1920×1080

Stand Alone 2 -
219,580 1 Spark Node 22

63.4 2 Spark Node 36
3 Spark Node 47

HD

1280x536

Stand Alone 3.6 -
186,886 1 Spark Node 28

71 2 Spark Node 49.8
3 Spark Node 59.8

4CIF
704x480

Stand Alone 7 -
86662 1 Spark Node 54

238 2 Spark Node 93
3 Spark Node 102

CIF

352 x 220

Stand Alone 30 -
39518 1 Spark Node 232

500 2 Spark Node 340.9

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 16, NO. 4, April 2022 1163

3 Spark Node 365.8

QCIF
176 x 120

Stand Alone 128 -
12922 1 Spark Node 357

740 2 Spark Node 380
3 Spark Node 395

5. Conclusion and Future Work
This paper proposed a system to develop a scalable, low-cost video analytic data

pipeline by using open-source Big Data technologies on commodity hardware and evaluating
our work by performing various experiments. Our solution integrates the OpenCV library with
Apache Spark and Kafka and provides good scalability on the commodity hardware. Our
approach eliminates the need for using expensive GPU-based hardware and cloud computing
infrastructure for face detection video analytics. Our evaluation shows that increasing the
Spark nodes in the Spark cluster increased the system’s throughput. Although there is an
appropriate batch interval to increase the number of frames processed per second, but this
increase in throughput is limited by an upper limit on batch interval. We also concluded that
for higher resolution images, the face detection algorithm’s performance was better compared
to images of lower resolution. In the future, we intend to develop a dynamic resource allocation
algorithm for Spark and Kafka to increase or decrease the available resources depending on
the demand for video streams.

References

[1] Qingyang Zhang, Hui Sun, Xiaopei Wu, and Hong Zhong, “Edge video analytics for public safety:
A review,” Proceedings of the IEEE, vol. 107, no. 8, pp. 1675–1696, 2019. Article (CrossRef Link)

[2] Samvit Jain, Ganesh Ananthanarayanan, Junchen Jiang, Yuanchao Shu, and Joseph Gonzalez,
“Scaling video analytics systems to large camera deployments,” in Proc. of the 20th International
Workshop on Mobile Computing Systems and Applications, pp. 9–14, 2019. Article (CrossRef Link)

[3] Martin Gill and Angela Spriggs, Assessing the impact of CCTV, vol. 292, Home Office Research,
Development and Statistics Directorate London, 2005.

[4] I. K. Park, N. Singhal, M. H. Lee, S. Cho, and C. Kim, “Design and performance evaluation of
image processing algorithms on GPUs,” IEEE Transactions on Parallel and Distributed Systems,
vol. 22, no. 1, pp. 91–104, 2011. Article (CrossRef Link)

[5] Michael Zink, Ramesh Sitaraman, and Klara Nahrstedt, “Scalable 360° video stream delivery:
Challenges, solutions, and opportunities,” Proceedings of the IEEE, vol. 107, no. 4, pp. 639–650,
2019. Article (CrossRef Link)

[6] J. Fung and S. Mann, “Using graphics devices in reverse: GPU-based image processing and
computer vision,” in Proc. of 2008 IEEE International Conference on Multimedia and Expo, pp.
9–12, 2008. Article (CrossRef Link)

[7] Ashiq Anjum, Tariq Abdullah, Muhammad Tariq, Yusuf Baltaci, and Nick Antonopoulos, “Video
stream analysis in clouds: An object detection and classification framework for high performance
video analytics,” IEEE Transactions on Cloud Computing, vol. 7, no. 4, pp. 1152-1167, 2019.
Article (CrossRef Link)

https://doi.org/10.1109/jproc.2019.2925910
https://doi.org/10.1145/3301293.3302366
https://doi.org/10.1109/tpds.2010.115
https://doi.org/10.1109/jproc.2019.2894817
https://doi.org/10.1109/icme.2008.4607358
https://doi.org/10.1109/tcc.2016.2517653

1164 Ayub et al.: Scalable Big Data Pipeline for Video Stream Analytics Over Commodity Hardware

[8] Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott Shenker, and Ion Stoica, “Spark:
Cluster computing with working sets,” in Proc. of the 2Nd USENIX Conference on Hot Top- ics in
Cloud Computing (Berkeley, CA, USA), HotCloud’10, pp. 10–10, 2010.

[9] J. Kreps, N. Narkhede, and J. Rao, Kafka: “A distributed messaging system for log processing,” in
Proc. of 6th International Work- shop on Networking Meets Databases (NetDB), Athens, Greece,
2011.

[10] Chun-Wei Tsai, Chin-Feng Lai, Han-Chieh Chao, and Athanasios V. Vasilakos, “Big data
analytics: A Survey,” Journal of Big Data, vol. 2, no. 21, pp. 13-52, 2015. Article (CrossRef Link)

[11] Chris Sweeney, Liu Liu, Sean Arietta, and Jason Lawrence, “Hipi: a hadoop image processing
interface for image-based mapreduce tasks,” Chris. University of Virginiam, vol. 2, no. 1, pp. 1–5,
2011.

[12] Helly M Patel, Krunal Panchal, Prashant Chauhan, and MB Potdar, “Large scale image processing
using distributed and parallel architecture,” International Journal of Computer Science and
Information Technologies, Gujrat, India, vol. 6, no. 6, pp. 5531–5535, 2015.

[13] Bilal Iqbal, Waheed Iqbal, Nazar Khan, Arif Mahmood, and Abdelkarim Erradi, “Canny edge
detection and hough transform for high resolution video streams using hadoop and spark,” Cluster
Computing, vol. 23, no. 1, pp. 397–408, 2020. Article (CrossRef Link)

[14] Lei Huang Yuzhong Yan, “Large-scale image processing research cloud,”.
[15] Tingxi Wen, Haotian Liu, Luxin Lin, Bin Wang, Jigong Hou, Chuanbo Huang, Ting Pan, and Yu

Du, “Multiswarm artificial bee colony algorithm based on spark cloud computing platform for
medical image registration,” Computer Methods and Programs in Biomedicine, vol. 192, 105432,
2020. Article (CrossRef Link)

[16] M. Cao, L. Zheng, W. Jia, and X. Liu, “Joint 3D reconstruction and object tracking for traffic video
analysis under iov environment,” IEEE Transactions on Intelligent Transportation Systems, vol.
22, no. 6, pp. 3577-3591, 2021. Article (CrossRef Link)

[17] Nan Zhang, Yun-shan Chen, and Jian-li Wang, “Image parallel processing based on GPU,” in Proc.
of 2010 2nd International Conference on Advanced Computer Control, vol. 3, pp. 367–370, 2010.
Article (CrossRef Link)

[18] J. Choi, B. Kim, J. Jeon, H. Lee, E. Lim, and C. E. Rhee, “Poster: Gpu based near data processing
for image processing with pattern aware data allocation and prefetching,” in Proc. of 2019 28th
International Conference on Parallel Architectures and Compilation Techniques (PACT), pp.
469–470, 2019. Article (CrossRef Link)

[19] A Xuggler, Xuggle, “xuggler api,” 2012. [Online]. Available: http://www.xuggle.com/xuggler/
[20] Suramya Tomar, “Converting video formats with ffmpeg,” Linux Jour- nal, vol. 2006, no. 146, p.

10, 2006.

https://doi.org/10.1007/978-3-319-44550-2_2
https://doi.org/10.1007/s10586-019-02929-x
https://doi.org/10.1016/j.cmpb.2020.105432
https://doi.org/10.1109/tits.2020.2995768
https://doi.org/10.1109/icacc.2010.5486836
https://doi.org/10.1109/pact.2019.00049

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 16, NO. 4, April 2022 1165

Umer Ayub received his Master of Philosophy (MPhil) in Computer Science degree from
Punjab University College of Information Technology (PUCIT), University of the Punjab,
Lahore, Pakistan. He is currently serving as Full-Time Faculty Member at Department of
Computer Science, Qarshi University, Lahore. His core research interests include Cloud
Computing, Big Data and Network Security.

Dr. Syed Muhammad Ahsan received his PhD in Computer Science from University of
Engineering & Technology (UET), Lahore, Pakistan in 2008. At present, an Associate
Professor, and Chairperson of Qarshi University, Dr. Syed Ahsan has more than 26 years of
academic and industrial experience. As Associate Professor, he served University of
Engineering and Technology, Lahore for more than 20 years. Later he served as Associate
Professor (Tenured) at King Abdulaziz University, Jeddah, Saudi Arabia for five years. His
area of expertise includes Distributed Databases, Cheminformatics / Bioinformatics, Security
Informatics, Cyber Security, Distant Learning, Ontologies, and Semantic Web.

Shavez Mushtaq Qureshi received his Master of Philosophy (MPhil) in Computer
Science degree from Punjab University College of Information Technology (PUCIT),
University of the Punjab, Lahore, Pakistan. He is working as Full-Time Faculty Member at
Department of Computer Science, Qarshi University, Lahore. His research interest focuses
on Wireless Sensor Networks, Cloud Computing, Cyber Security and Computer Networks.

