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Abstract 
Rapid advances in science and technology with exponential development of smart mobile devices, 
workstations, supercomputers, smart gadgets and network servers has been witnessed over the past few years. 
The sudden increase in the Internet population and manifold growth in internet speeds has occasioned the 
generation of an enormous amount of data, now termed ‘big data’. Given this scenario, storage of data on 
local servers or a personal computer is an issue, which can be resolved by utilizing cloud computing. At 
present, there are several cloud computing service providers available to resolve the big data issues. This paper 
establishes a framework that builds Hadoop clusters on the new single-board computer (SBC) Mobile 
Raspberry Pi. Moreover, these clusters offer facilities for storage as well as computing. Besides the fact that the 
regular data centers require large amounts of energy for operation, they also need cooling equipment and 
occupy prime real estate. However, this energy consumption scenario and the physical space constraints can 
be solved by employing a Mobile Raspberry Pi with Hadoop clusters that provides a cost-effective, low-power, 
high-speed solution along with micro-data center support for big data. Hadoop provides the required 
modules for the distributed processing of big data by deploying map-reduce programming approaches. In this 
work, the performance of SBC clusters and a single computer were compared. It can be observed from the 
experimental data that the SBC clusters exemplify superior performance to a single computer, by around 20%. 
Furthermore, the cluster processing speed for large volumes of data can be enhanced by escalating the 
number of SBC nodes. Data storage is accomplished by using a Hadoop Distributed File System (HDFS), 
which offers more flexibility and greater scalability than a single computer system. 
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1. Introduction 

In the present times, massive amounts of data get generated from various sources such as social 
media, science & technology institutions, weather organizations, corporate firms, web services, and so 
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on. Such a swift upsurge in data volumes in various fields has captured the attention of the business, 
academic and scientific communities. Consequently, offering tools for storage, handling and information 
recovery from vast volumes of data is today among the most significant issues in information technology 
research [1]. To meet the escalating need for data storage, manipulation and information recovery, new 
data centers are being created. Moreover, the servers in these data centers guzzle a large proportion of 
energy resources for storing, analyzing and processing such immense quantities of data, also referred to 
as big data. 

Usually, big data denotes an extensive assortment of enormous data volumes that it is hardly possible 
to handle and manipulate by employing conventional data management tools, due to its sheer size and 
complexity [2,3]. The term ‘big data’ was coined in 2005 by Roger Magoulas of O’Reilly media. The 
specific and inescapable challenges of big data include the fact that the infrastructure required for 
handling enormous data volumes has to be built using limited resources, and severely limited 
processing time-periods. Also, extracting eloquent facts and figures from such data requires the 
utilization of storage clusters and intricate data applications [4]. 

Furthermore, these applications should possess features or functionalities such as extreme scalability, 
data distribution, load balancing, fault tolerance, superior availability, manipulation and information 
retrieval. To resolve these issues, Dean and Ghemawat [5] established the MapReduce model for 
processing massive volumes of data on large clusters. 

Apache Hadoop is an open source software approach employed in the distributed storage, handling, 
and analysis of significant data volumes [6]. The crux of Apache Hadoop comprises of a storage 
portion, referred to as Hadoop Distributed File System (HDFS), and a handling and analysis part 
termed MapReduce. A single-board computer (SBC) is an all-purpose computer, which is constructed 
on a single circuit board along with the required microprocessor(s), memory, input/output and other 
functionalities essential for a well-designed computer [7]. The Mobile Raspberry Pi is a less expensive 
SBC that can be exploited for many applications. The vital contributions of this research are the 
deployment of the Mobile Raspberry Pi SBC with Hadoop clusters, which provides parallel and 
distributed processing with augmented and robust performance. Section 2 illustrates the related work. 
The system design and implementation are elucidated in Section 3, while the results and discussion are 
elaborated in Section 4. Section 5 presents the conclusion. 

 
 

2. Related Work 

In recent years, the Raspberry Pi has been proclaimed to be one of the most popular single-board 
computers around the world. Moreover, SBC clusters have been implemented for several business, 
scientific and academic tasks. Raspberry Pi SBCs have the competitive advantages of being inexpensive 
with low energy consumption while offering the functionalities similar to an effusively built computer. 
Besides, many Raspberry Pi clusters have been constructed and implemented for academia and research 
utilities [8-11]. Abrahamsson et al. [8] constructed a Raspberry Pi cluster comprising of 300 nodes. 
Each node in this cluster included a Raspberry Pi Model B device and they constructed it as a low-cost 
and low-power-consumption cluster for green research test bed and mobile data center applications. 

Cox et al. [9] built a low energy consuming, handy, relatively cheap and submissively ventilated 
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cluster for academic purposes, named the Iridis-Pi cluster. The Iridis-Pi cluster includes 64 Raspberry 
Pi Model B nodes, in which every node is allocated with a 700-MHz Acorn RISC Machine (ARM) 
processor, a 256-MB random-access memory and a 16 GB secure digital card for local storage utilities. 
Kiepert [10] constructed a Beowulf cluster by deploying 32 Raspberry Pi Model B devices, a 48-port 
10/100 switch, an Arch Linux ARM, and a Message Passing Interface MPICH3. Besides, the Message 
Passing Interface program that computes the π value using Monte Carlo technique was employed for 
measuring the performance of this cluster. 

Tso and his colleagues constructed the Glasgow Raspberry Pi cloud comprised of 56 nodes. Each 
node in this cluster was made up of a Raspberry Pi Model B device along with the PiCloud software 
stack built over Linux containers for system virtualization. The PiCloud imitates each layer of a cloud 
stack that varies from virtualization of resources to the behavior of the networks. Additionally, this 
framework offers an ambiance for academic and cloud computing research [11]. Schot [12] constructed 
a Raspberry Pi cluster as a substitute for various 1U rack servers.  Also, his purpose was to build a low-
cost, remarkably synchronized, small-energy and less-expensive ventilated cluster with typical rack 
servers to be used for a big data setting. Kaewkasi and Srisuruk [13] constructed a model with Hadoop 
clusters for processing big data, which was built over 22 ARM devices. Subsequently, Hadoop’s 
MapReduce was substituted by Spark, and their research was to study the power consumption and the 
input/output performance of the hardware. Qureshi et al. [14] used the inexpensive Hadoop clusters to 
analyze the performance of a cloud computing conceptualization for employing several applications in 
computer vision and robotics. Hajji and Tso [15] established their research by building a cloud model 
based on Raspberry Pi for investigating and analyzing real-time big data in different ambient scenarios. 
Morabito [16] built a model to assess the performance of various low-power gadgets for managing 
container virtualization. 

Compared to the existing frameworks, this research focuses on evaluating the performance of the 
designed system under realistic conditions. The clusters are formed using the Raspberry Pi third 
generation units combined with Apache Hadoop to efficiently compute the big data generated. As 
compared to previous methods, the combination of Hadoop and Raspberry Pi 3 has all the qualities that 
various methods sometimes failed to adapt. The experiment is easily scalable, cheap, secure, and has 
high fault tolerance. The low cost of the Raspberry Pi clusters and the scalable Hadoop environment can 
be used for a variety of complex operations in this era of big data. 

 
 

3. Background and System Description 

In this section, the details about the components such as the SBC, Hadoop, and SURF (Speed Up 
Robust Features) algorithm are presented. 

 

3.1 Single Board Computer 
 

In general, an SBC is a concise and extensive computer assembled on a single circuit board with 
microprocessor(s), memory, input/output ports and other functional modules necessary for a full 
purpose computer. In the present scenario, smart devices and gadgets such as Raspberry Pi, cell phone, 
Arduino, tablet and notebook computers are some of the commonly available single-board computers. 



An Efficient Implementation of Mobile Raspberry Pi Hadoop Clusters for Robust and Augmented Computing Performance 

 

992 | J Inf Process Syst, Vol.14, No.4, pp.989~1009, August 2018 

In comparison with desktop personal computers, an SBC is not dependent on expansion slots for 
peripheral functions. Currently, the jargon SBC is synonymous with an architecture in which the SBC is 
plugged into a backplane for fabricating a computer bus. Utilization of an SBC lessens the total cost by 
decreasing the number of circuit boards required and by also eliminating the need for bus driver 
circuits and connectors. 

 
3.2 Hadoop 
 

Hadoop is an open source software framework built by Apache. It uses a map-reduce programming 
model to process big data sets and manage distributed storage. They are built using commodity 
hardware around the assumption that hardware failures are a common occurrence and should be 
handled by the framework automatically. 

HDFS which handles the storage part is the core of Apache Hadoop, and the map reduced 
programming model handles the processing part. All the files are split into large blocks in the Hadoop 
model, which are then distributed among multiple nodes of the cluster. The data is then processed 
parallelly in these nodes using transferred packaged codes. In this method, each node manipulates and 
processes the data that it has access to locally. Taking advantage of this data locality allows the 
processing of the dataset to be highly efficient and faster compared to the traditional supercomputer 
architecture using the parallel file system. In the conventional architecture, the computation and the 
data distribution are done via high-speed network, whereas in the Hadoop architecture they are 
accomplished over the same node. 

The Hadoop framework [19] consists of multiple modules like YARN, HDFS, and so on. The libraries 
and the utilities required by the other Hadoop modules are contained in the Hadoop Common Module. 
The YARN provides us with the resource management platform capable of managing computing 
resources across the cluster, allowing them to be used efficiently for user application scheduling. A 
distributed file-system known as HDFS stores the data on the node. Further, this allows a high 
aggregated bandwidth across the cluster. The Hadoop MapReduce module is the map-reduce 
programming model for large-scale data processing. The architecture of two different versions of 
Hadoop can be seen in Fig. 1. 

 

 
Fig. 1. The architectural difference between Hadoop 1.0 and Hadoop 2.0. 
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3.3 OpenCV 
 

OpenCV is the Intel developed visual function which provides a large number of functions for image 
processing. The acronym OpenCV refers to Open Source Computer Vision library, and it has some C 
and C++ functions that help in implementing standard procedures and algorithms for image processing 
and computer vision. Some features are based upon state-of-the-art papers, and using them directly 
instead of reimplementation saves much time. The OpenCV codes are optimized, leading to efficient 
processing. SURF is the commonly used algorithm implementation of OpenCV to capture image 
feature points, as explored below. 

 

3.3.1 SURF algorithm 
 

SURF, which is an improvement to the SIFT’s functions, was proposed by Bay et al. [17] in 2006. The 
processing speed is faster compared to the SIFT algorithm, since the computations are significantly 
reduced. The algorithm is divided into 6 parts. 

i) Integral images: The use of integral images is the main reason for the overall performance 
improvement of the algorithm. Only four addition operators are used to calculate the sum of grayscale 
values in any rectangle. The Box Filter is used to make the calculations faster. 

ii) Hessian matrix based interest points: The roots of Hessian matrix are used to detect the feature 
points in the SURF algorithm. The detection candidate point is positioned more stably as the 
determinant is used to determine the local extrema. The Hessian matrix H(χ, σ) is defined in Eq. (4) for 
an input image Iwith point χ = (x, y) and the scale σ. 

 ( , ) = ( , ) ( , )( , ) ( , ) 	                                                           (1) 

 
where ( , )	a Gaussian function and Box Filter is used to approximate a Gaussian quadratic 
differential operation. As a result, ( , ), ( , ), ( , ) use DoG faster as compared to the 
SIFT algorithm. 

iii) Scale space representation: The input image is convoluted with the Gaussian function, then 
reduced and then again convoluted with the Gaussian function. As a result, the SURF algorithm does 
not change the size of the original image. Further, to achieve different scale changes the appropriate 
filter size is used, making the algorithm independent of information from the previous layer. 

iv) Interest point localization: This part of the algorithm is similar to that of the SIFT, except that 
the comparative value used here is the determinant of the approximate Hessian matrix. The value is 
obtained through Eq. (5). 

 det = 	 		 − 0.9	 	                                                   (2) 
 
v) Orientation assignment: The orientation of the point of interest is found to achieve rotational 

invariance. Moreover, keeping the candidate point as the center, the Haar wavelet responses are found 
within a circular neighborhood of radius six scale. The Gaussian function then weights the responses. 
The dominant orientation is estimated by summing the horizontal and vertical responses within a 
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sliding orientation window of size π/3. The two summed responses yield the local orientation vector, 
and the most extended such vector defines the orientation of the point of interest. 

vi) Descriptor based on the sum of Haar wavelet responses: A square region of size 20 scale is 
extracted keeping the point-of-interest as center and orientation as found in the previous steps. This 
region is further split into 4×4 sized subregions, and the Haar wavelet responses are extracted at 5×5 
regularly spaced sample points for each subregion. The descriptor is thus represented as a vector 
representation of the dimensions. 

 
 

4. System Design and Implementation 

In this section, we introduce the method and the experimental setup used for the research. First, the 
“Development Tools and System” section explains the reason for the selection, and then the parallel 
cluster setup is explained in the next two sections. Finally, the “Image Feature Point Processing” section 
explains how to determine if the image feature points are similar. 

 
4.1 Development Tools and System 
 

Eclipse LUNA is used to develop the Hadoop MapReduce calculation program. MapReduce is a java 
code written using Eclipse development platform and then exported to a JAR file. This file is then sent 
to Hadoop run. 

 
4.2 Experimental Equipment and System Platform 
 

We use several sets of Mobile Raspberry Pi to build several Hadoop clusters. For each cluster unit, we 
can compare the image feature points. First, we create the Hadoop platform to calculate the massive 
image feature points, and then we observe the effects of these calculations on each cluster. Table 1 below 
shows the experimental setup used in the process. 

 
Table 1. Details about the experimental setup used in the process 

 
Cluster

Single computer 
Unit 1 Unit 2 Unit 3 Unit 4 Unit 5 Unit 6

Hardware equipment Mobile Raspberry Pi 3rd generation I5-4440 8G RAM 
Assignment system Ubuntu  

Cluster system Hadoop 2.7.1 
Node quantity 5 6 7 8 9 10 1 

 
 

4.2.1 Setting the cluster network environment 
 

In Hadoop, one master is used to control all the nodes on the DataNode and TaskTracker, as Hadoop 
relies on SSH for communication with other nodes and data transmission. A LAN setup connects all the 
nodes, and only the master can communicate outside the network. This design helps avoid exposure of 
all the nodes on a public network and also provides a faster transmission rate. Table 2 displays an 
example of the network configuration used for a cluster. 
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Table 2. Example of network configuration for a cluster 
Computer name Network quality Task

Master 
 

192.168.1.99
203.145.205.222 

NameNode, JobTracker, ResourceManager 
 

Node 1 192.168.1.21 DataNode, TaskTracker, NodeManager 
Node 2 192.168.1.22 DataNode, TaskTracker, NodeManager 
Node 3 192.168.1.23 DataNode, TaskTracker, NodeManager 
Node 4 192.168.1.24 DataNode, TaskTracker, NodeManager 
Node 5 192.168.1.25 DataNode, TaskTracker, NodeManager 
Node 6 192.168.1.26 DataNode, TaskTracker, NodeManager 
Node 7 192.168.1.27 DataNode, TaskTracker, NodeManager 
Node 8 192.168.1.28 DataNode, TaskTracker, NodeManager 
Node 9 192.168.1.29 DataNode, TaskTracker, NodeManager 

Node 10 192.168.1.30 DataNode, TaskTracker, NodeManager 
 

4.3 Hadoop Settings 
 

While establishing the Hadoop cluster units, some of the necessary parameters of the nodes and the 
master should be the same, while parameters such as memory settings, CPU usage, and so on can be 
different. Each slave node reports for the resources to the master, which further assigns the unified 
workload. The main profiles in Hadoop 2.X include Hadoop-env.sh, mapred-env.sh, slaves and yarn-
env.sh, which can be adjusted according to individual needs and the hardware. The primary setting 
includes Java path, Java memory use, run file path, several resource configuration cutting, LOG record 
file location, LOG memory use, computing resource usage and MapReduce memory usage and slaves 
number name, and so on. Most of these settings are configured by the master, while slaves only 
configure a few settings including core-site.xml, HDFS-site.xml, YARN-site.xml and mapred-site.xml, 
as explained further. 

 
4.3.1 Core-site setting 
 

The primary purpose of this parameter file is to specify the NameNode hostname and the network 
traffic port number used, which is set to 9,000 for this research. Fig. 2 shows the details regarding the 
other parameter setting of core-site.xml. 

 

 
Fig. 2. Code snippet for core-site.xml. 
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4.3.2 HDFS-site setting 
 

This parameter file controls the HDFS host-node name storage path, data storage path, and so on as 
shown in Table 3. We set the master to HDFS, master communication port to 50070, and the recovery 
NameNode communication port to 50090. The file copy number is set to three parts that divides each 
portion of the block to be copied into three parts. The size of each block is set to 64 MB, which helps 
prevent wastage of space. The speed of operation is not affected due to the above parameter 
adjustments. Fig. 3 shows the details regarding the other parameter settings of hdfs-site.xml. 

 
Table 3. Some parameters and their details for hdfs-site.xml 

Parameter ID Remark 

dfs.http.address Set hdfs host computer and port 

dfs.secondary.http.address Set up a backup NameNode 

dfs.datanode.data.dir Set hdfs computer data storage path 

dfs.namenode.name.dir Set the NameNode data storage path 

dfs.replication Set the number of data copies 

dfs.block.size Cutting data set for each part size (default 128MB)  

 

 

Fig. 3. Code snippet for hdfs-site.xml. 
 

4.3.3 Mapred-site setting 
 

This XML parameter file manages the use of some parameters as shown in Table 4 and the number of 
resources used by map-reduce at the time of execution. Usually, the map and reduce operations do not 
start at the same time. The reduce operation usually starts after completion of up to 5% of the map 
operation. Fig. 4 shows the details regarding the other parameter settings of mapred-site.xml. 
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Fig. 4. Code snippet for mapred-site.xml. 
 

Table 4. Some parameters and their details for mapred-site.xml 
Parameter ID Remark 

mapred.reduce.slowstart.completed.maps 
Set the start time of reduce, the maximum value is 1 
(100%), default value 0.05 (5%). 

mapreduce.map.memory.mb How much memory can be used when setting map execution 
mapreduce.reduce.memory.mb Set how much memory can be used when implementing reduce. 

 
 

4.3.4 Yarn-site setting 
 

This parameter file controls the adjustment of the usage of the resources as well as the some of the 
virtual memory, NodeManager (NM) related parameters and so on, as shown in Table 5. The virtual 
CPU number setting is divided into ResourceManager (RM) with relevant parameters. The 
communication port of RM and NM is set to 8025 in this experimental setup. The port 8050 is set for 
the client and RM communication purposes that are used to submit the job and kill the tasks. 

 
Table 5. Some parameters and their details for yarn-site.xml 

Parameter ID Remark 
yarn.nodemanager.resource.cpu-vcores Virtual CPU amount, default 8 
yarn.nodemanager.resource.memory-mb The total amount of memory 
yarn.scheduler.minimum-allocation-mb Minimum memory that can be used by job, default 1 GB 
yarn.scheduler.maximum-allocation-mb Maximum memory that can be used by job, default 8 GB 
yarn.nodemanager.vmem-pmem-ratio 
 
 

Virtual memory using the magnification value, 1 MB physical 
memory can be applied to the number of virtual memory, the 
default magnification 2.1 

 
The number of virtual cores used by the entire node is adjusted to the same number with the core of 

physical value, since the Raspberry core clock is not high. We do not change the lower and the upper 
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limit values on the memory usage of a single task, which are 1024 MB and 8192 MB, respectively. The 
other parameter settings can be seen in Fig. 5. 

 

 

Fig. 5. Code snippet for yarn-site.xml. 
 

4.4 Image Feature Point Processing 
 
4.4.1 Feature point extraction 
 

We use SURF algorithm on the input image in OpenCV to extract the feature points of the image. 
The matrix will consist of N 64 feature point values, where N is the number of feature points. Each 
feature point is represented as a 2-dimension array that stores the comparison values at the beginning 
of each feature point corresponding to the N 64 matrix and the vector values taken for each feature 
point, as shown in Fig. 6. 

 

 

Fig. 6. SURF feature point matrix. 
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4.4.2 Scale distance algorithm 
 

Each feature point constitutes 16 subregions, and each subregion contains four values. Thus each 
feature point is a 16 4 = 64 dimensional vector. We compare the feature points that are similar with 
regard to scale distance. A threshold value is used to judge the similarity of two feature points. If the 
feature points are not within the threshold value, we do not compare them, as shown in Fig. 7. 

If we do not set the threshold value, there might be a possibility that the algorithm ends up 
comparing values that are relatively close to the scale but not within the threshold. Typically, the 
smaller the threshold value, the more stringent the model will be, but if the value is too small it may lead 
to redundancy, since two images of the same thing will not have the same value of the feature point. 

 

 
M: The number of feature points in the source 
N: Number of feature points of data samples 
Fi: Sources sample feature vector 
Kj: Data sample feature vector 
D: Dimensional spaces distance 
Count: Counter 

Fig. 7. The feature-point scale algorithm flow chart. 
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4.5 Performance Evaluation 
 

We first use OpenCV to extract all the image feature points and then store them in a text format with 
the help of Hadoop HDFS. The Map-Reduce program runs the scale distance algorithm in the map 
block that counts all the matching samples and the source images at the scale of the feature points. The 
information regarding the samples and the source images is quite similar. This information is passed to 
the reduce block for the final screening operation and is finally compared, to return the sample number 
and a similar number of points. 

We observe the average time taken by the clusters of Raspberry Pi and also by the single PC, to 
evaluate performance. 

 

 

5. Results and Discussion 

The experiment is set up under IDE with an efficient map-reduce environment to output a java 
executable file which is then passed on to the Hadoop of the master host. Further, to set up the Hadoop 
environment, we pass the SSH command through the Linux terminal to confirm the connection 
between the nodes. Then we use the Linux terminal to issue other necessary instructions to operate 
Hadoop through the master node. 

 

5.1 Hadoop Setup 
 

The NameNode format instruction is run at the master node to compete for the Hadoop settings and 
count the number of nodes in the cluster through SSH communication so that the nodes can create a 
better HDFS folder. Moreover, to complete the process, the master node must start the decentralized 
file storage system. 

After completing the above process, the image feature point samples are imported into Hadoop’s 
decentralized storage system. First, we start the Hadoop HDFS by using start-dfs.sh in the master 
terminal. Then the nodes are connected through SSH, and the master can view the HDFS information 
via dfsadmin-report. Finally, the master node issues the hodoopdfs-put command to upload all the 
information to the distributed storage system. 

The node terminal issued JPS instruction can see the operation of the NodeManager while the master 
terminal issued JPS instruction can see the operation of the ResourceManager. Further, this means that 
the Hadoop YARN system is active and running smoothly. We can also use the YARN browser 
interface to view the information of the cluster nodes and also observe the MapReduce jobs running 
through this interface. 

 

5.2 Experimental Results 
 

After completing the above Hadoop cluster setup, the MapReduce program is used to identify the 
feature points of the image and find the image similar to the input data, to test the overall performance. 
Table 6 shows the details about the characteristics of the HDFS data file. 
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Table 6. Details about the characteristics of the HDFS data file 
Group Data size Information data test groups 

1 251 MB 1,000  
2 504.1MB 2,000 
3 1 GB 4,000 

4 2.01 GB 8,000 

5 4.03 GB 16,000 

6 8.07 GB 32,000 

7 16.13 GB 64,000 

8 32.26 GB 128,000 

 

5.2.1 Single computer performance 
 

We use i5-4440, 3.1 GHz CPU with 8 GB memory for this experimental setup and calculate the time 
consumed per 100 operations, as shown in Figs. 8, 9 and Table 7, using the total operation time. From 
the experimental results, we can observe that the amount of data does not affect processing efficiency, 
and the values of average time consumed are very close to each other. 

 

 

Fig. 8. Graph showing total average time consumed by a single computer for different classes of dataset. 
 

 
Fig. 9. Graph showing average time consumed by a single computer per 100 datasets for different 
classes of dataset. 
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Table 7. The average range of time consumed by a single computer per 100 data sets for each data test group 
Data test groups Time consumed per 100 datasets (s) 

16,000 1.414±0.009 
32,000 1.411±0.007 
64,000 1.410±0.004 

128,000 1.411±0.005 
 

5.2.2 Raspberry Pi cluster performance 
 

We set up 6 sets of Mobile Raspberry Pi Hadoop clusters, each containing 5, 6, 7, 8, 9, 10 sets of 
Raspberry Pi nodes. Similar to the single computer, we observe the changes in the volumes of data and 
their influence on the performance of the nodes for each cluster as shown in Figs. 10–15 and Tables 8–13. 

 

 
Fig. 10. Graph showing average time consumed by a 5 node cluster for different classes of dataset. 

 
Table 8. The average range of time consumed by a 5 node cluster per 100 datasets for each data test group 

Data test groups Time consumed per 100 datasets (s) 
1000 19.79 ± 3.68 
2000 11.54 ± 1.55 
4000 6.19 ± 0.12 
8000 3.14 ± 0.13 

16000 2.90 ± 0.12 
32000 2.80 ± 0.11 
64000 2.58 ± 0.08 

128000 2.25 ± 0.11 
 

 
Fig. 11. Graph showing average time consumed by a 6 node cluster for different classes of data set. 
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Table 9. The average range of time consumed by a 6 node cluster per 100 datasets for each data test 
group 

Data test groups Time consumed per 100 datasets (s) 
1000 13.16 ± 3.19
2000 7.13 ± 1.68
4000 4.01 ± 0.21
8000 3.21 ± 0.21

16000 2.39 ± 0.13
32000 2.06 ± 0.07
64000 1.89 ± 0.07

128000 1.80 ± 0.08
 

 
Fig. 12. Graph showing average time consumed by a 7 node cluster for different classes of dataset. 

 
Table 10. The average range of time consumed by a 7 node cluster per 100 datasets for each data test 
group 

Data test groups Time consumed per 100 datasets (s) 
1000 14.45 ± 2.36
2000 7.61 ± 1.22
4000 4.14 ± 0.29
8000 2.63 ± 0.28

16000 2.22 ± 0.04
32000 1.90 ± 0.05
64000 1.73 ± 0.02

128000 1.66 ± 0.03
 

 
Fig. 13. Graph showing average time consumed by an 8 node cluster for different classes of dataset. 
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Table 11. The average range of time consumed by a 8 node cluster per 100 datasets for each data test 
group 

Data test groups Time consumed per 100 datasets (s) 
1000 10.86 ± 2.74
2000 7.08 ± 1.23
4000 3.95 ± 0.37
8000 2.18 ± 0.13

16000 1.79 ± 0.10
32000 1.53 ± 0.07
64000 1.43 ± 0.06

128000 1.36 ± 0.03
 

 
Fig. 14. Graph showing average time consumed by a 9 node cluster for different classes of dataset. 

 
Table 12. The average range of time consumed by a 9 node cluster per 100 datasets for each data test 
group 

Data test groups Time consumed per 100 datasets (s) 
1000 13.99 ± 3.20
2000 6.94 ± .156
4000 4.24 ± 0.26
8000 2.14 ± 0.09

16000 1.76 ± 0.19
32000 1.48 ± 0.09
64000 1.38 ± 0.12

128000 1.27 ± 0.03
 

 
Fig. 15. Graph showing average time consumed by a 10 node cluster for different classes of dataset. 
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Table 13. The average range of time consumed by a 10 node cluster per 100 datasets for each data test 
group 

Data test groups Time consumed per 100 datasets (s) 
1000 12.89 ± 3.30 
2000 7.59 ± 1.08 
4000 4.10 ± 0.20 
8000 2.09 ± 0.14 

16000 1.68 ± 0.13 
32000 1.55 ± 0.35 
64000 1.23 ± 0.04 

128000 1.13 ± 0.05 
 

 
Fig. 16. Graph showing a comparison of total average time consumed by each node cluster for different 
classes. 

 
We can observe in the Figs. 16 and 17 that the performance of a cluster with ten nodes is about 90% 

higher than that of the cluster with 5 nodes. The computation time decreases as the number of nodes 
increases. Further, this proves that Hadoop treats all nodes as individuals and does not share the 
individual resources. For example, with 128,000 data test groups, each additional cluster node will 
enhance the performance by 10% more than the previous arrangement. If the data is too small, 
increasing the number of nodes in the cluster will not significantly impact the computing efficiency. 

 

 
Fig. 17. Graph showing a comparison of average time consumed by each node cluster per 100 datasets 
for different classes of dataset. 
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Fig. 18. Graph showing a comparison of total average time consumed by a 10 node cluster and by a 
single computer for different classes of dataset. 

 
5.2.3 Performance comparison 
 

We compare the computing performance for the single computer and the 10-node Raspberry Pi 
cluster for 128,000 data test groups. A single computer takes about 1.41 seconds to compute 100 feature 
information of an image whereas the Raspberry Pi cluster takes only 1.13 seconds. In a similar 
condition with 16,000 data test groups, a single computer takes about 1.4 seconds, while the raspberry 
pi cluster computes in 1.6 seconds. The detailed statistics can be seen in Fig. 18. 

 
 

6. Conclusion 

We use Apache Hadoop combined with the Raspberry Pi cluster to compute the big data generated 
via feature point extraction on an image. The MapReduce operation in Hadoop and the salient features 
of Raspberry Pi 3 helps us perform the experiment more efficiently compared to a high processing 
single computer, as shown in the study. However, the same cannot be said when we deal with a smaller 
dataset. 

The Hadoop provides us the flexibility to quickly scale the setup for handling even more massive 
datasets. The HDFS storage system used by the Hadoop provides us with better security and higher 
fault tolerance when compared to single host storage. HDFS breaks the data into many blocks scattered 
over various nodes, which make it difficult to interpret the contents of information from a single node, 
thus providing better security for the data. 

The low cost of the Raspberry Pi clusters and the scalable Hadoop environment can be used for a 
variety of complex operations in this era of big data. 
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