

www.kips.or.kr Copyright© 2018 KIPS

An Efficient Implementation of Mobile Raspberry Pi
Hadoop Clusters for Robust and Augmented

Computing Performance

Kathiravan Srinivasan*, Chuan-Yu Chang**, Chao-Hsi Huang***, Min-Hao Chang***,

Anant Sharma****, and Avinash Ankur****

Abstract
Rapid advances in science and technology with exponential development of smart mobile devices,
workstations, supercomputers, smart gadgets and network servers has been witnessed over the past few years.
The sudden increase in the Internet population and manifold growth in internet speeds has occasioned the
generation of an enormous amount of data, now termed ‘big data’. Given this scenario, storage of data on
local servers or a personal computer is an issue, which can be resolved by utilizing cloud computing. At
present, there are several cloud computing service providers available to resolve the big data issues. This paper
establishes a framework that builds Hadoop clusters on the new single-board computer (SBC) Mobile
Raspberry Pi. Moreover, these clusters offer facilities for storage as well as computing. Besides the fact that the
regular data centers require large amounts of energy for operation, they also need cooling equipment and
occupy prime real estate. However, this energy consumption scenario and the physical space constraints can
be solved by employing a Mobile Raspberry Pi with Hadoop clusters that provides a cost-effective, low-power,
high-speed solution along with micro-data center support for big data. Hadoop provides the required
modules for the distributed processing of big data by deploying map-reduce programming approaches. In this
work, the performance of SBC clusters and a single computer were compared. It can be observed from the
experimental data that the SBC clusters exemplify superior performance to a single computer, by around 20%.
Furthermore, the cluster processing speed for large volumes of data can be enhanced by escalating the
number of SBC nodes. Data storage is accomplished by using a Hadoop Distributed File System (HDFS),
which offers more flexibility and greater scalability than a single computer system.

Keywords
Clusters, Hadoop, MapReduce, Mobile Raspberry Pi, Single-board Computer

1. Introduction

In the present times, massive amounts of data get generated from various sources such as social
media, science & technology institutions, weather organizations, corporate firms, web services, and so

※ This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which

permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Manuscript received November 15, 2017; first revision December 12, 2017; accepted January 29, 2018.
Corresponding Author: Chao-Hsi Huang (chhuang@niu.edu.tw)
* School of Information Technology and Engineering, Vellore Institute of Technology, Vellore, India (kathiravan.srinivasan@vit.ac.in)
** Dept. of Computer Science and Information Engineering, National Yunlin University of Science and Technology, Yunlin, Taiwan (chuanyu

@yuntech.edu.tw)
*** Dept. of Computer Science and Information Engineering, National Ilan University, Yilan City, Taiwan (chhuang@niu.edu.tw; spurs20406

@yahoo.com.tw)
**** Dept. of Computer Science and Engineering, The LNM Institute of Information Technology, Jaipur, India (y13uc025@lnmiit.ac.in;

y13uc058@lnmiit.ac.in)

J Inf Process Syst, Vol.14, No.4, pp.989~1009, August 2018 ISSN 1976-913X (Print)
https://doi.org/10.3745/JIPS.01.0031 ISSN 2092-805X (Electronic)

An Efficient Implementation of Mobile Raspberry Pi Hadoop Clusters for Robust and Augmented Computing Performance

990 | J Inf Process Syst, Vol.14, No.4, pp.989~1009, August 2018

on. Such a swift upsurge in data volumes in various fields has captured the attention of the business,
academic and scientific communities. Consequently, offering tools for storage, handling and information
recovery from vast volumes of data is today among the most significant issues in information technology
research [1]. To meet the escalating need for data storage, manipulation and information recovery, new
data centers are being created. Moreover, the servers in these data centers guzzle a large proportion of
energy resources for storing, analyzing and processing such immense quantities of data, also referred to
as big data.

Usually, big data denotes an extensive assortment of enormous data volumes that it is hardly possible
to handle and manipulate by employing conventional data management tools, due to its sheer size and
complexity [2,3]. The term ‘big data’ was coined in 2005 by Roger Magoulas of O’Reilly media. The
specific and inescapable challenges of big data include the fact that the infrastructure required for
handling enormous data volumes has to be built using limited resources, and severely limited
processing time-periods. Also, extracting eloquent facts and figures from such data requires the
utilization of storage clusters and intricate data applications [4].

Furthermore, these applications should possess features or functionalities such as extreme scalability,
data distribution, load balancing, fault tolerance, superior availability, manipulation and information
retrieval. To resolve these issues, Dean and Ghemawat [5] established the MapReduce model for
processing massive volumes of data on large clusters.

Apache Hadoop is an open source software approach employed in the distributed storage, handling,
and analysis of significant data volumes [6]. The crux of Apache Hadoop comprises of a storage
portion, referred to as Hadoop Distributed File System (HDFS), and a handling and analysis part
termed MapReduce. A single-board computer (SBC) is an all-purpose computer, which is constructed
on a single circuit board along with the required microprocessor(s), memory, input/output and other
functionalities essential for a well-designed computer [7]. The Mobile Raspberry Pi is a less expensive
SBC that can be exploited for many applications. The vital contributions of this research are the
deployment of the Mobile Raspberry Pi SBC with Hadoop clusters, which provides parallel and
distributed processing with augmented and robust performance. Section 2 illustrates the related work.
The system design and implementation are elucidated in Section 3, while the results and discussion are
elaborated in Section 4. Section 5 presents the conclusion.

2. Related Work

In recent years, the Raspberry Pi has been proclaimed to be one of the most popular single-board
computers around the world. Moreover, SBC clusters have been implemented for several business,
scientific and academic tasks. Raspberry Pi SBCs have the competitive advantages of being inexpensive
with low energy consumption while offering the functionalities similar to an effusively built computer.
Besides, many Raspberry Pi clusters have been constructed and implemented for academia and research
utilities [8-11]. Abrahamsson et al. [8] constructed a Raspberry Pi cluster comprising of 300 nodes.
Each node in this cluster included a Raspberry Pi Model B device and they constructed it as a low-cost
and low-power-consumption cluster for green research test bed and mobile data center applications.

Cox et al. [9] built a low energy consuming, handy, relatively cheap and submissively ventilated

Kathiravan Srinivasan, Chuan-Yu Chang, Chao-Hsi Huang, Min-Hao Chang, Anant Sharma, and Avinash Ankur

J Inf Process Syst, Vol.14, No.4, pp.989~1009, August 2018 | 991

cluster for academic purposes, named the Iridis-Pi cluster. The Iridis-Pi cluster includes 64 Raspberry
Pi Model B nodes, in which every node is allocated with a 700-MHz Acorn RISC Machine (ARM)
processor, a 256-MB random-access memory and a 16 GB secure digital card for local storage utilities.
Kiepert [10] constructed a Beowulf cluster by deploying 32 Raspberry Pi Model B devices, a 48-port
10/100 switch, an Arch Linux ARM, and a Message Passing Interface MPICH3. Besides, the Message
Passing Interface program that computes the π value using Monte Carlo technique was employed for
measuring the performance of this cluster.

Tso and his colleagues constructed the Glasgow Raspberry Pi cloud comprised of 56 nodes. Each
node in this cluster was made up of a Raspberry Pi Model B device along with the PiCloud software
stack built over Linux containers for system virtualization. The PiCloud imitates each layer of a cloud
stack that varies from virtualization of resources to the behavior of the networks. Additionally, this
framework offers an ambiance for academic and cloud computing research [11]. Schot [12] constructed
a Raspberry Pi cluster as a substitute for various 1U rack servers. Also, his purpose was to build a low-
cost, remarkably synchronized, small-energy and less-expensive ventilated cluster with typical rack
servers to be used for a big data setting. Kaewkasi and Srisuruk [13] constructed a model with Hadoop
clusters for processing big data, which was built over 22 ARM devices. Subsequently, Hadoop’s
MapReduce was substituted by Spark, and their research was to study the power consumption and the
input/output performance of the hardware. Qureshi et al. [14] used the inexpensive Hadoop clusters to
analyze the performance of a cloud computing conceptualization for employing several applications in
computer vision and robotics. Hajji and Tso [15] established their research by building a cloud model
based on Raspberry Pi for investigating and analyzing real-time big data in different ambient scenarios.
Morabito [16] built a model to assess the performance of various low-power gadgets for managing
container virtualization.

Compared to the existing frameworks, this research focuses on evaluating the performance of the
designed system under realistic conditions. The clusters are formed using the Raspberry Pi third
generation units combined with Apache Hadoop to efficiently compute the big data generated. As
compared to previous methods, the combination of Hadoop and Raspberry Pi 3 has all the qualities that
various methods sometimes failed to adapt. The experiment is easily scalable, cheap, secure, and has
high fault tolerance. The low cost of the Raspberry Pi clusters and the scalable Hadoop environment can
be used for a variety of complex operations in this era of big data.

3. Background and System Description

In this section, the details about the components such as the SBC, Hadoop, and SURF (Speed Up
Robust Features) algorithm are presented.

3.1 Single Board Computer

In general, an SBC is a concise and extensive computer assembled on a single circuit board with
microprocessor(s), memory, input/output ports and other functional modules necessary for a full
purpose computer. In the present scenario, smart devices and gadgets such as Raspberry Pi, cell phone,
Arduino, tablet and notebook computers are some of the commonly available single-board computers.

An Efficient Implementation of Mobile Raspberry Pi Hadoop Clusters for Robust and Augmented Computing Performance

992 | J Inf Process Syst, Vol.14, No.4, pp.989~1009, August 2018

In comparison with desktop personal computers, an SBC is not dependent on expansion slots for
peripheral functions. Currently, the jargon SBC is synonymous with an architecture in which the SBC is
plugged into a backplane for fabricating a computer bus. Utilization of an SBC lessens the total cost by
decreasing the number of circuit boards required and by also eliminating the need for bus driver
circuits and connectors.

3.2 Hadoop

Hadoop is an open source software framework built by Apache. It uses a map-reduce programming
model to process big data sets and manage distributed storage. They are built using commodity
hardware around the assumption that hardware failures are a common occurrence and should be
handled by the framework automatically.

HDFS which handles the storage part is the core of Apache Hadoop, and the map reduced
programming model handles the processing part. All the files are split into large blocks in the Hadoop
model, which are then distributed among multiple nodes of the cluster. The data is then processed
parallelly in these nodes using transferred packaged codes. In this method, each node manipulates and
processes the data that it has access to locally. Taking advantage of this data locality allows the
processing of the dataset to be highly efficient and faster compared to the traditional supercomputer
architecture using the parallel file system. In the conventional architecture, the computation and the
data distribution are done via high-speed network, whereas in the Hadoop architecture they are
accomplished over the same node.

The Hadoop framework [19] consists of multiple modules like YARN, HDFS, and so on. The libraries
and the utilities required by the other Hadoop modules are contained in the Hadoop Common Module.
The YARN provides us with the resource management platform capable of managing computing
resources across the cluster, allowing them to be used efficiently for user application scheduling. A
distributed file-system known as HDFS stores the data on the node. Further, this allows a high
aggregated bandwidth across the cluster. The Hadoop MapReduce module is the map-reduce
programming model for large-scale data processing. The architecture of two different versions of
Hadoop can be seen in Fig. 1.

Fig. 1. The architectural difference between Hadoop 1.0 and Hadoop 2.0.

Kathiravan Srinivasan, Chuan-Yu Chang, Chao-Hsi Huang, Min-Hao Chang, Anant Sharma, and Avinash Ankur

J Inf Process Syst, Vol.14, No.4, pp.989~1009, August 2018 | 993

3.3 OpenCV

OpenCV is the Intel developed visual function which provides a large number of functions for image
processing. The acronym OpenCV refers to Open Source Computer Vision library, and it has some C
and C++ functions that help in implementing standard procedures and algorithms for image processing
and computer vision. Some features are based upon state-of-the-art papers, and using them directly
instead of reimplementation saves much time. The OpenCV codes are optimized, leading to efficient
processing. SURF is the commonly used algorithm implementation of OpenCV to capture image
feature points, as explored below.

3.3.1 SURF algorithm

SURF, which is an improvement to the SIFT’s functions, was proposed by Bay et al. [17] in 2006. The
processing speed is faster compared to the SIFT algorithm, since the computations are significantly
reduced. The algorithm is divided into 6 parts.

i) Integral images: The use of integral images is the main reason for the overall performance
improvement of the algorithm. Only four addition operators are used to calculate the sum of grayscale
values in any rectangle. The Box Filter is used to make the calculations faster.

ii) Hessian matrix based interest points: The roots of Hessian matrix are used to detect the feature
points in the SURF algorithm. The detection candidate point is positioned more stably as the
determinant is used to determine the local extrema. The Hessian matrix H(χ, σ) is defined in Eq. (4) for
an input image Iwith point χ = (x, y) and the scale σ.

 (,) = (,) (,)(,) (,) 	 (1)

where (,)	a Gaussian function and Box Filter is used to approximate a Gaussian quadratic
differential operation. As a result, (,), (,), (,) use DoG faster as compared to the
SIFT algorithm.

iii) Scale space representation: The input image is convoluted with the Gaussian function, then
reduced and then again convoluted with the Gaussian function. As a result, the SURF algorithm does
not change the size of the original image. Further, to achieve different scale changes the appropriate
filter size is used, making the algorithm independent of information from the previous layer.

iv) Interest point localization: This part of the algorithm is similar to that of the SIFT, except that
the comparative value used here is the determinant of the approximate Hessian matrix. The value is
obtained through Eq. (5).

 det = 	 		 − 0.9	 	 (2)

v) Orientation assignment: The orientation of the point of interest is found to achieve rotational

invariance. Moreover, keeping the candidate point as the center, the Haar wavelet responses are found
within a circular neighborhood of radius six scale. The Gaussian function then weights the responses.
The dominant orientation is estimated by summing the horizontal and vertical responses within a

An Efficient Implementation of Mobile Raspberry Pi Hadoop Clusters for Robust and Augmented Computing Performance

994 | J Inf Process Syst, Vol.14, No.4, pp.989~1009, August 2018

sliding orientation window of size π/3. The two summed responses yield the local orientation vector,
and the most extended such vector defines the orientation of the point of interest.

vi) Descriptor based on the sum of Haar wavelet responses: A square region of size 20 scale is
extracted keeping the point-of-interest as center and orientation as found in the previous steps. This
region is further split into 4×4 sized subregions, and the Haar wavelet responses are extracted at 5×5
regularly spaced sample points for each subregion. The descriptor is thus represented as a vector
representation of the dimensions.

4. System Design and Implementation

In this section, we introduce the method and the experimental setup used for the research. First, the
“Development Tools and System” section explains the reason for the selection, and then the parallel
cluster setup is explained in the next two sections. Finally, the “Image Feature Point Processing” section
explains how to determine if the image feature points are similar.

4.1 Development Tools and System

Eclipse LUNA is used to develop the Hadoop MapReduce calculation program. MapReduce is a java
code written using Eclipse development platform and then exported to a JAR file. This file is then sent
to Hadoop run.

4.2 Experimental Equipment and System Platform

We use several sets of Mobile Raspberry Pi to build several Hadoop clusters. For each cluster unit, we
can compare the image feature points. First, we create the Hadoop platform to calculate the massive
image feature points, and then we observe the effects of these calculations on each cluster. Table 1 below
shows the experimental setup used in the process.

Table 1. Details about the experimental setup used in the process

Cluster

Single computer
Unit 1 Unit 2 Unit 3 Unit 4 Unit 5 Unit 6

Hardware equipment Mobile Raspberry Pi 3rd generation I5-4440 8G RAM
Assignment system Ubuntu

Cluster system Hadoop 2.7.1
Node quantity 5 6 7 8 9 10 1

4.2.1 Setting the cluster network environment

In Hadoop, one master is used to control all the nodes on the DataNode and TaskTracker, as Hadoop
relies on SSH for communication with other nodes and data transmission. A LAN setup connects all the
nodes, and only the master can communicate outside the network. This design helps avoid exposure of
all the nodes on a public network and also provides a faster transmission rate. Table 2 displays an
example of the network configuration used for a cluster.

Kathiravan Srinivasan, Chuan-Yu Chang, Chao-Hsi Huang, Min-Hao Chang, Anant Sharma, and Avinash Ankur

J Inf Process Syst, Vol.14, No.4, pp.989~1009, August 2018 | 995

Table 2. Example of network configuration for a cluster
Computer name Network quality Task

Master

192.168.1.99
203.145.205.222

NameNode, JobTracker, ResourceManager

Node 1 192.168.1.21 DataNode, TaskTracker, NodeManager
Node 2 192.168.1.22 DataNode, TaskTracker, NodeManager
Node 3 192.168.1.23 DataNode, TaskTracker, NodeManager
Node 4 192.168.1.24 DataNode, TaskTracker, NodeManager
Node 5 192.168.1.25 DataNode, TaskTracker, NodeManager
Node 6 192.168.1.26 DataNode, TaskTracker, NodeManager
Node 7 192.168.1.27 DataNode, TaskTracker, NodeManager
Node 8 192.168.1.28 DataNode, TaskTracker, NodeManager
Node 9 192.168.1.29 DataNode, TaskTracker, NodeManager

Node 10 192.168.1.30 DataNode, TaskTracker, NodeManager

4.3 Hadoop Settings

While establishing the Hadoop cluster units, some of the necessary parameters of the nodes and the
master should be the same, while parameters such as memory settings, CPU usage, and so on can be
different. Each slave node reports for the resources to the master, which further assigns the unified
workload. The main profiles in Hadoop 2.X include Hadoop-env.sh, mapred-env.sh, slaves and yarn-
env.sh, which can be adjusted according to individual needs and the hardware. The primary setting
includes Java path, Java memory use, run file path, several resource configuration cutting, LOG record
file location, LOG memory use, computing resource usage and MapReduce memory usage and slaves
number name, and so on. Most of these settings are configured by the master, while slaves only
configure a few settings including core-site.xml, HDFS-site.xml, YARN-site.xml and mapred-site.xml,
as explained further.

4.3.1 Core-site setting

The primary purpose of this parameter file is to specify the NameNode hostname and the network
traffic port number used, which is set to 9,000 for this research. Fig. 2 shows the details regarding the
other parameter setting of core-site.xml.

Fig. 2. Code snippet for core-site.xml.

An Efficient Implementation of Mobile Raspberry Pi Hadoop Clusters for Robust and Augmented Computing Performance

996 | J Inf Process Syst, Vol.14, No.4, pp.989~1009, August 2018

4.3.2 HDFS-site setting

This parameter file controls the HDFS host-node name storage path, data storage path, and so on as
shown in Table 3. We set the master to HDFS, master communication port to 50070, and the recovery
NameNode communication port to 50090. The file copy number is set to three parts that divides each
portion of the block to be copied into three parts. The size of each block is set to 64 MB, which helps
prevent wastage of space. The speed of operation is not affected due to the above parameter
adjustments. Fig. 3 shows the details regarding the other parameter settings of hdfs-site.xml.

Table 3. Some parameters and their details for hdfs-site.xml

Parameter ID Remark

dfs.http.address Set hdfs host computer and port

dfs.secondary.http.address Set up a backup NameNode

dfs.datanode.data.dir Set hdfs computer data storage path

dfs.namenode.name.dir Set the NameNode data storage path

dfs.replication Set the number of data copies

dfs.block.size Cutting data set for each part size (default 128MB)

Fig. 3. Code snippet for hdfs-site.xml.

4.3.3 Mapred-site setting

This XML parameter file manages the use of some parameters as shown in Table 4 and the number of
resources used by map-reduce at the time of execution. Usually, the map and reduce operations do not
start at the same time. The reduce operation usually starts after completion of up to 5% of the map
operation. Fig. 4 shows the details regarding the other parameter settings of mapred-site.xml.

Kathiravan Srinivasan, Chuan-Yu Chang, Chao-Hsi Huang, Min-Hao Chang, Anant Sharma, and Avinash Ankur

J Inf Process Syst, Vol.14, No.4, pp.989~1009, August 2018 | 997

Fig. 4. Code snippet for mapred-site.xml.

Table 4. Some parameters and their details for mapred-site.xml
Parameter ID Remark

mapred.reduce.slowstart.completed.maps
Set the start time of reduce, the maximum value is 1
(100%), default value 0.05 (5%).

mapreduce.map.memory.mb How much memory can be used when setting map execution
mapreduce.reduce.memory.mb Set how much memory can be used when implementing reduce.

4.3.4 Yarn-site setting

This parameter file controls the adjustment of the usage of the resources as well as the some of the
virtual memory, NodeManager (NM) related parameters and so on, as shown in Table 5. The virtual
CPU number setting is divided into ResourceManager (RM) with relevant parameters. The
communication port of RM and NM is set to 8025 in this experimental setup. The port 8050 is set for
the client and RM communication purposes that are used to submit the job and kill the tasks.

Table 5. Some parameters and their details for yarn-site.xml

Parameter ID Remark
yarn.nodemanager.resource.cpu-vcores Virtual CPU amount, default 8
yarn.nodemanager.resource.memory-mb The total amount of memory
yarn.scheduler.minimum-allocation-mb Minimum memory that can be used by job, default 1 GB
yarn.scheduler.maximum-allocation-mb Maximum memory that can be used by job, default 8 GB
yarn.nodemanager.vmem-pmem-ratio

Virtual memory using the magnification value, 1 MB physical
memory can be applied to the number of virtual memory, the
default magnification 2.1

The number of virtual cores used by the entire node is adjusted to the same number with the core of

physical value, since the Raspberry core clock is not high. We do not change the lower and the upper

An Efficient Implementation of Mobile Raspberry Pi Hadoop Clusters for Robust and Augmented Computing Performance

998 | J Inf Process Syst, Vol.14, No.4, pp.989~1009, August 2018

limit values on the memory usage of a single task, which are 1024 MB and 8192 MB, respectively. The
other parameter settings can be seen in Fig. 5.

Fig. 5. Code snippet for yarn-site.xml.

4.4 Image Feature Point Processing

4.4.1 Feature point extraction

We use SURF algorithm on the input image in OpenCV to extract the feature points of the image.
The matrix will consist of N 64 feature point values, where N is the number of feature points. Each
feature point is represented as a 2-dimension array that stores the comparison values at the beginning
of each feature point corresponding to the N 64 matrix and the vector values taken for each feature
point, as shown in Fig. 6.

Fig. 6. SURF feature point matrix.

Kathiravan Srinivasan, Chuan-Yu Chang, Chao-Hsi Huang, Min-Hao Chang, Anant Sharma, and Avinash Ankur

J Inf Process Syst, Vol.14, No.4, pp.989~1009, August 2018 | 999

4.4.2 Scale distance algorithm

Each feature point constitutes 16 subregions, and each subregion contains four values. Thus each
feature point is a 16 4 = 64 dimensional vector. We compare the feature points that are similar with
regard to scale distance. A threshold value is used to judge the similarity of two feature points. If the
feature points are not within the threshold value, we do not compare them, as shown in Fig. 7.

If we do not set the threshold value, there might be a possibility that the algorithm ends up
comparing values that are relatively close to the scale but not within the threshold. Typically, the
smaller the threshold value, the more stringent the model will be, but if the value is too small it may lead
to redundancy, since two images of the same thing will not have the same value of the feature point.

M: The number of feature points in the source
N: Number of feature points of data samples
Fi: Sources sample feature vector
Kj: Data sample feature vector
D: Dimensional spaces distance
Count: Counter

Fig. 7. The feature-point scale algorithm flow chart.

An Efficient Implementation of Mobile Raspberry Pi Hadoop Clusters for Robust and Augmented Computing Performance

1000 | J Inf Process Syst, Vol.14, No.4, pp.989~1009, August 2018

4.5 Performance Evaluation

We first use OpenCV to extract all the image feature points and then store them in a text format with
the help of Hadoop HDFS. The Map-Reduce program runs the scale distance algorithm in the map
block that counts all the matching samples and the source images at the scale of the feature points. The
information regarding the samples and the source images is quite similar. This information is passed to
the reduce block for the final screening operation and is finally compared, to return the sample number
and a similar number of points.

We observe the average time taken by the clusters of Raspberry Pi and also by the single PC, to
evaluate performance.

5. Results and Discussion

The experiment is set up under IDE with an efficient map-reduce environment to output a java
executable file which is then passed on to the Hadoop of the master host. Further, to set up the Hadoop
environment, we pass the SSH command through the Linux terminal to confirm the connection
between the nodes. Then we use the Linux terminal to issue other necessary instructions to operate
Hadoop through the master node.

5.1 Hadoop Setup

The NameNode format instruction is run at the master node to compete for the Hadoop settings and
count the number of nodes in the cluster through SSH communication so that the nodes can create a
better HDFS folder. Moreover, to complete the process, the master node must start the decentralized
file storage system.

After completing the above process, the image feature point samples are imported into Hadoop’s
decentralized storage system. First, we start the Hadoop HDFS by using start-dfs.sh in the master
terminal. Then the nodes are connected through SSH, and the master can view the HDFS information
via dfsadmin-report. Finally, the master node issues the hodoopdfs-put command to upload all the
information to the distributed storage system.

The node terminal issued JPS instruction can see the operation of the NodeManager while the master
terminal issued JPS instruction can see the operation of the ResourceManager. Further, this means that
the Hadoop YARN system is active and running smoothly. We can also use the YARN browser
interface to view the information of the cluster nodes and also observe the MapReduce jobs running
through this interface.

5.2 Experimental Results

After completing the above Hadoop cluster setup, the MapReduce program is used to identify the
feature points of the image and find the image similar to the input data, to test the overall performance.
Table 6 shows the details about the characteristics of the HDFS data file.

Kathiravan Srinivasan, Chuan-Yu Chang, Chao-Hsi Huang, Min-Hao Chang, Anant Sharma, and Avinash Ankur

J Inf Process Syst, Vol.14, No.4, pp.989~1009, August 2018 | 1001

Table 6. Details about the characteristics of the HDFS data file
Group Data size Information data test groups

1 251 MB 1,000
2 504.1MB 2,000
3 1 GB 4,000

4 2.01 GB 8,000

5 4.03 GB 16,000

6 8.07 GB 32,000

7 16.13 GB 64,000

8 32.26 GB 128,000

5.2.1 Single computer performance

We use i5-4440, 3.1 GHz CPU with 8 GB memory for this experimental setup and calculate the time
consumed per 100 operations, as shown in Figs. 8, 9 and Table 7, using the total operation time. From
the experimental results, we can observe that the amount of data does not affect processing efficiency,
and the values of average time consumed are very close to each other.

Fig. 8. Graph showing total average time consumed by a single computer for different classes of dataset.

Fig. 9. Graph showing average time consumed by a single computer per 100 datasets for different
classes of dataset.

0

500

1000

1500

2000

16,000 32,000 64,000 128,000

Ti
m

e
co

ns
um

ed
 (
s)

Data test groups

1.408

1.409

1.41

1.411

1.412

1.413

1.414

1.415

1.416

16,000 32,000 64,000 128,000

Ti
m

e
co

n
su

m
ed

 (
s)

Data test groups

An Efficient Implementation of Mobile Raspberry Pi Hadoop Clusters for Robust and Augmented Computing Performance

1002 | J Inf Process Syst, Vol.14, No.4, pp.989~1009, August 2018

Table 7. The average range of time consumed by a single computer per 100 data sets for each data test group
Data test groups Time consumed per 100 datasets (s)

16,000 1.414±0.009
32,000 1.411±0.007
64,000 1.410±0.004

128,000 1.411±0.005

5.2.2 Raspberry Pi cluster performance

We set up 6 sets of Mobile Raspberry Pi Hadoop clusters, each containing 5, 6, 7, 8, 9, 10 sets of
Raspberry Pi nodes. Similar to the single computer, we observe the changes in the volumes of data and
their influence on the performance of the nodes for each cluster as shown in Figs. 10–15 and Tables 8–13.

Fig. 10. Graph showing average time consumed by a 5 node cluster for different classes of dataset.

Table 8. The average range of time consumed by a 5 node cluster per 100 datasets for each data test group

Data test groups Time consumed per 100 datasets (s)
1000 19.79 ± 3.68
2000 11.54 ± 1.55
4000 6.19 ± 0.12
8000 3.14 ± 0.13

16000 2.90 ± 0.12
32000 2.80 ± 0.11
64000 2.58 ± 0.08

128000 2.25 ± 0.11

Fig. 11. Graph showing average time consumed by a 6 node cluster for different classes of data set.

0

5

10

15

20

25

1000 2000 4000 8000 16000 32000 64000 128000

Ti
m

e
co

ns
um

ed
 (
s)

Data test groups

0

2

4

6

8

10

12

14

1000 2000 4000 8000 16000 32000 64000 128000

Ti
m

e
co

n
su

m
ed

 (
s)

Data test groups

Kathiravan Srinivasan, Chuan-Yu Chang, Chao-Hsi Huang, Min-Hao Chang, Anant Sharma, and Avinash Ankur

J Inf Process Syst, Vol.14, No.4, pp.989~1009, August 2018 | 1003

Table 9. The average range of time consumed by a 6 node cluster per 100 datasets for each data test
group

Data test groups Time consumed per 100 datasets (s)
1000 13.16 ± 3.19
2000 7.13 ± 1.68
4000 4.01 ± 0.21
8000 3.21 ± 0.21

16000 2.39 ± 0.13
32000 2.06 ± 0.07
64000 1.89 ± 0.07

128000 1.80 ± 0.08

Fig. 12. Graph showing average time consumed by a 7 node cluster for different classes of dataset.

Table 10. The average range of time consumed by a 7 node cluster per 100 datasets for each data test
group

Data test groups Time consumed per 100 datasets (s)
1000 14.45 ± 2.36
2000 7.61 ± 1.22
4000 4.14 ± 0.29
8000 2.63 ± 0.28

16000 2.22 ± 0.04
32000 1.90 ± 0.05
64000 1.73 ± 0.02

128000 1.66 ± 0.03

Fig. 13. Graph showing average time consumed by an 8 node cluster for different classes of dataset.

0

2

4

6

8

10

12

14

16

1000 2000 4000 8000 16000 32000 64000 128000

Ti
m

e
co

n
su

m
ed

 (
s)

Data test groups

0

2

4

6

8

10

12

1000 2000 4000 8000 16000 32000 64000 128000

Ti
m

e
co

n
su

m
ed

 (
s)

Data test groups

An Efficient Implementation of Mobile Raspberry Pi Hadoop Clusters for Robust and Augmented Computing Performance

1004 | J Inf Process Syst, Vol.14, No.4, pp.989~1009, August 2018

Table 11. The average range of time consumed by a 8 node cluster per 100 datasets for each data test
group

Data test groups Time consumed per 100 datasets (s)
1000 10.86 ± 2.74
2000 7.08 ± 1.23
4000 3.95 ± 0.37
8000 2.18 ± 0.13

16000 1.79 ± 0.10
32000 1.53 ± 0.07
64000 1.43 ± 0.06

128000 1.36 ± 0.03

Fig. 14. Graph showing average time consumed by a 9 node cluster for different classes of dataset.

Table 12. The average range of time consumed by a 9 node cluster per 100 datasets for each data test
group

Data test groups Time consumed per 100 datasets (s)
1000 13.99 ± 3.20
2000 6.94 ± .156
4000 4.24 ± 0.26
8000 2.14 ± 0.09

16000 1.76 ± 0.19
32000 1.48 ± 0.09
64000 1.38 ± 0.12

128000 1.27 ± 0.03

Fig. 15. Graph showing average time consumed by a 10 node cluster for different classes of dataset.

0

2

4

6

8

10

12

14

16

1000 2000 4000 8000 16000 32000 64000 128000

Ti
m

e
co

n
su

m
ed

 (
s)

Data test groups

0

2

4

6

8

10

12

14

1000 2000 4000 8000 16000 32000 64000 128000

Ti
m

e
co

n
su

m
ed

 (
s)

Data test groups

Kathiravan Srinivasan, Chuan-Yu Chang, Chao-Hsi Huang, Min-Hao Chang, Anant Sharma, and Avinash Ankur

J Inf Process Syst, Vol.14, No.4, pp.989~1009, August 2018 | 1005

Table 13. The average range of time consumed by a 10 node cluster per 100 datasets for each data test
group

Data test groups Time consumed per 100 datasets (s)
1000 12.89 ± 3.30
2000 7.59 ± 1.08
4000 4.10 ± 0.20
8000 2.09 ± 0.14

16000 1.68 ± 0.13
32000 1.55 ± 0.35
64000 1.23 ± 0.04

128000 1.13 ± 0.05

Fig. 16. Graph showing a comparison of total average time consumed by each node cluster for different
classes.

We can observe in the Figs. 16 and 17 that the performance of a cluster with ten nodes is about 90%

higher than that of the cluster with 5 nodes. The computation time decreases as the number of nodes
increases. Further, this proves that Hadoop treats all nodes as individuals and does not share the
individual resources. For example, with 128,000 data test groups, each additional cluster node will
enhance the performance by 10% more than the previous arrangement. If the data is too small,
increasing the number of nodes in the cluster will not significantly impact the computing efficiency.

Fig. 17. Graph showing a comparison of average time consumed by each node cluster per 100 datasets
for different classes of dataset.

0

500

1000

1500

2000

2500

3000

3500

1000 2000 4000 8000 16000 32000 64000 128000

5 Node Cluster 6 Node Cluster 7 Node Cluster

8 Node Cluster 9 Node Cluster 10 Node Cluster

0

2

4

6

8

10

12

14

16

18

20

1,000 2,000 4,000 8,000 16,000 32,000 64,000 128,000

Ti
m

e
co

ns
um

ed
 (
s)

Data test groups

5 Node Cluster 6 Node Cluster 7 Node Cluster 8 Node Cluster 9 Node Cluster 10 Node Cluster

An Efficient Implementation of Mobile Raspberry Pi Hadoop Clusters for Robust and Augmented Computing Performance

1006 | J Inf Process Syst, Vol.14, No.4, pp.989~1009, August 2018

Fig. 18. Graph showing a comparison of total average time consumed by a 10 node cluster and by a
single computer for different classes of dataset.

5.2.3 Performance comparison

We compare the computing performance for the single computer and the 10-node Raspberry Pi
cluster for 128,000 data test groups. A single computer takes about 1.41 seconds to compute 100 feature
information of an image whereas the Raspberry Pi cluster takes only 1.13 seconds. In a similar
condition with 16,000 data test groups, a single computer takes about 1.4 seconds, while the raspberry
pi cluster computes in 1.6 seconds. The detailed statistics can be seen in Fig. 18.

6. Conclusion

We use Apache Hadoop combined with the Raspberry Pi cluster to compute the big data generated
via feature point extraction on an image. The MapReduce operation in Hadoop and the salient features
of Raspberry Pi 3 helps us perform the experiment more efficiently compared to a high processing
single computer, as shown in the study. However, the same cannot be said when we deal with a smaller
dataset.

The Hadoop provides us the flexibility to quickly scale the setup for handling even more massive
datasets. The HDFS storage system used by the Hadoop provides us with better security and higher
fault tolerance when compared to single host storage. HDFS breaks the data into many blocks scattered
over various nodes, which make it difficult to interpret the contents of information from a single node,
thus providing better security for the data.

The low cost of the Raspberry Pi clusters and the scalable Hadoop environment can be used for a
variety of complex operations in this era of big data.

References

[1] A. Greenberg, J. Hamilton, D. A. Maltz, and P. Patel, “The cost of a cloud: research problems in data center
networks,” ACM SIGCOMM Computer Communication Review, vol. 39, no. 1, pp. 68-73, 2008.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

16000 32000 64000 128000

Ti
m

e
co

n
su

m
ed

 (
s)

Data test groups

10 Node Cluster Single Computer

Kathiravan Srinivasan, Chuan-Yu Chang, Chao-Hsi Huang, Min-Hao Chang, Anant Sharma, and Avinash Ankur

J Inf Process Syst, Vol.14, No.4, pp.989~1009, August 2018 | 1007

[2] J. M. Ross, “Roger Magoulas on big data,” 2010 [Online]. Available: https://perma.cc/NXB5-ER87.
[3] P. Zikopoulos, C. Eaton, D. deRoos, T. Deutsch, and G. Lapis, Understanding Big Data: Analytics for

Enterprise Class Hadoop and Streaming Data. New York, NY: McGraw-Hill, 2011.
[4] L. Xue, J. Ni, Y. Li, and J. Shen, “Provable data transfer from provable data possession and deletion in cloud

storage,” Computer Standards & Interfaces, vol. 54, pp. 46-54, 2017.
[5] J. Dean and S. Ghemawat, “MapReduce: simplified data processing on large clusters,” in Proceedings of the 6th

Symposium on Operating System Design and Implementation (OSDI), San Francisco, CA, 2004, pp. 137-150.
[6] C. Lam, “Introducing Hadoop,” in Hadoop in Action. Stanford, CT: Manning Publications, 2011
[7] W. P. Birmingham and D. P. Siewiorek, “MICON: a knowledge based single board computer designer,” in

Proceedings of the 21st Conference on Design Automation, Albuquerque, NM, 1984, pp. 565-571.
[8] P. Abrahamsson, S. Helmer, N. Phaphoom, L. Nicolodi, N. Preda, L. Miori, et al., “Affordable and energy-

efficient cloud computing clusters: The bolzano raspberry pi cloud cluster experiment,” in Proceedings of
2013 IEEE 5th International Conference on Cloud Computing Technology and Science (CloudCom), Bristol,
UK, 2013, pp. 170-175.

[9] S. J. Cox, J. T. Cox, R. P. Boardman, S. J. Johnston, M. Scott, and N. S. O’brien, “Iridis-Pi: a low-cost, compact
demonstration cluster,” Cluster Computing, vol. 17, no. 2, pp. 349-358, 2014.

[10] J. Kiepert, “Creating a raspberry pi-based Beowulf cluster,” 2013 [Online]. Available: http://coen.boisestate.
edu/ece/files/2013/05/Creating.a.Raspberry.Pi-Based.Beowulf.Cluster_v2.pdf.

[11] F. P. Tso, D. R. White, S. Jouet, J. Singer, and D. P. Pezaros, “The Glasgow raspberry pi cloud: a scale model
for cloud computing infrastructures,” in Proceedings of 2013 IEEE 33rd International Conference on
Distributed Computing Systems Workshops (ICDCSW), Philadelphia, PA, 2013, pp. 108-112.

[12] N. Schot, “Feasibility of raspberry pi 2 based micro data centers in big data applications,” in Proceedings of
the 23th University of Twente Student Conference on IT, Enschede, The Netherlands, 2015, pp. 1-9.

[13] C. Kaewkasi and W. Srisuruk, “A study of big data processing constraints on a low-power Hadoop cluster,”
in Proceedings of 2014 International Computer Science and Engineering Conference (ICSEC), Khon Kaen,
Thailand, 2014, pp. 267-272.

[14] B. Qureshi, Y. Javed, A. Koubaa, M. F. Sriti, and M. Alajlan, “Performance of a low cost Hadoop cluster for
image analysis in cloud robotics environment,” Procedia Computer Science, vol. 82, pp. 90-98, 2016.

[15] W. Hajji and F. P. Tso, “Understanding the performance of low power Raspberry Pi Cloud for big data,”
Electronics, vol. 5, no. 2, article no. 29, 2016.

[16] R. Morabito, “Virtualization on internet of things edge devices with container technologies: a performance
evaluation,” IEEE Access, vol. 5, pp. 8835-8850, 2017.

[17] H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool, “Speeded-up robust features (SURF),” Computer Vision and
Image Understanding, vol. 110, no. 3, pp. 346-359, 2008.

Kathiravan Srinivasan https://orcid.org/0000-0002-9352-0237

He received his B.E. in Electronics and Communication Engineering and M.E. in
Communication Systems Engineering from Anna University, Chennai, India. He also
secured a Ph.D. in Information and Communication Engineering from Anna
University Chennai, India. He is currently Associate Professor in the School of
Information Technology and Engineering at Vellore Institute of Technology, India.
He earlier served as Deputy Director - Office of International Affairs and also as
faculty in the Department of Computer Science and Information Engineering at

An Efficient Implementation of Mobile Raspberry Pi Hadoop Clusters for Robust and Augmented Computing Performance

1008 | J Inf Process Syst, Vol.14, No.4, pp.989~1009, August 2018

National Ilan University, Taiwan. He is presently an Associate Editor for IEEE Access
and Editorial Board Member and reviewer for various SCI, SCIE and Scopus Indexed
Journals. He has accomplished various globalization educational activities and
partnerships. He has played an active role in organizing several international
conferences, seminars, and lectures. He has been a keynote speaker at many
international conferences and IEEE events.

Chuan-Yu Chang https://orcid.org/0000-0001-9476-8130

He received a Ph.D. in Electrical Engineering from National Cheng Kung University,
Taiwan, in 2000. He is currently Distinguished Professor at the Department of
Computer Science and Information Engineering and Dean of Research &
Development, National Yunlin University of Science and Technology, Taiwan. His
research interests include computational intelligence and its application to medical
image processing, wafer defect inspection, emotion recognition, and pattern
recognition. In the above areas, he has more than 150 publications in journals and
conference proceedings. He serves as an Associate Editor for two international
journals, Multidimensional Systems and Signal Processing, and International Journal
of Control Theory and Applications. He is a Life Member of IPPR, TAAI, and a Senior
Member of IEEE. He is an IET Fellow, the chair of IEEE Signal Processing Society,
Tainan Chapter, and the representative for Region 10 of IEEE SPS Chapters
Committee.

Chao-Hsi Huang https://orcid.org/0000-0002-5429-2534

He received his Ph.D. degree in Physics from National Taiwan University, Taiwan,
R.O.C. in 2007. He is Associate Professor at the Institute of Computer Science and
Information Engineering, National Ilan University. His research interests include
RFID system, IOT, Cloud Computing, Mobile Device Programming, Parallel
Computing and Science Computation.

Min-Hao Chang https://orcid.org/0000-0003-1730-4695

He received his M.E. in Computer Science and Information Engineering from
National Ilan University, Yilan, Taiwan and B.E. in Computer Science and
Information Engineering from Vanung University, Taoyuan, Taiwan. He currently
serves as a Research Assistant at National Ilan University, Department of Chemical
and Materials Engineering, Yilan, Taiwan. Also, he serves as an Administrative
Assistant, National Ilan University, Department of Computer Science and
Information Engineering, Taiwan.

Anant Sharma https://orcid.org/0000-0001-6392-8082

He received a B.Tech. in Computer Science Engineering from The LNM Institute of
Information Technology, Jaipur, India in 2017. He has worked as a summer intern at
ArcelorMittal, Kazakhstan and as a Research Assistant at National Ilan University,
Taiwan. His current research interests include machine learning, computer vision,
and evaluation of systems.

Kathiravan Srinivasan, Chuan-Yu Chang, Chao-Hsi Huang, Min-Hao Chang, Anant Sharma, and Avinash Ankur

J Inf Process Syst, Vol.14, No.4, pp.989~1009, August 2018 | 1009

Avinash Ankur https://orcid.org/0000-0002-7605-9194

He competed his bachelor’s in technology in the field of Computer Science from The
LNM Institute of Information Technology, Jaipur, India. He worked as an intern at
the Indian Institute of Information Technology, Patna, and as a Research Assistant at
National Ilan University, Yilan, Taiwan. He has also been a part of the core
organization committees of several national and international level college fests.

