• Title/Summary/Keyword: closed-form analysis

Search Result 687, Processing Time 0.027 seconds

Closed-Form Expression of Approximate ML DOA Estimates in Bistatic MIMO Radar System (바이스태틱 MIMO 레이다 시스템에 적용되는 ML 도래각 추정 알고리즘의 근사 추정치에 대한 Closed-Form 표현)

  • Paik, Ji Woong;Kim, Jong-Mann;Lee, Joon-Ho
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.11
    • /
    • pp.886-893
    • /
    • 2017
  • Recently, for detection of low-RCS targets, bistatic radar and multistatic radar have been widely employed. In this paper, we present the process of deriving the received signal modeling of the bistatic MIMO radar system and deals with the performance analysis of applying the bistatic signal to the ML arrival angle estimation algorithm. In case of the ML algorithm, as the number of the targets increases, azimuth search dimension for DOA estimation also increases, which implies that the ML algorithm for multiple targets is computationally very intensive. To solve this problem a closed-form expression of estimation error is presented for performance analysis of the algorithm.

Closed-Form Time Domain Solutions for Multiconductor TEM Lines (TEM 다중 전송 선로에 대한 Closed-Form 형태의 시간 영역 해석)

  • Jeong, Jae-Hoon;Hong, Ic-Pyo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.6 s.121
    • /
    • pp.680-688
    • /
    • 2007
  • Time domain closed-form analytical solutions to the coupled telegrapher's equations for the voltage and current on a lossless multiconductor transmission line are presented. The resulting expressions are obtained in the form of exact time domain propagators operating on the line voltage and current. Time domain numerical methods are developed and examples showing exceptionally accurate results are obtained for uniform and nonuniform; symmetric and asymmetric strip lines.

Closed-form Capacity Analysis for MIMO Rayleigh Channels

  • Humayun Kabir, S. M.;Pham, Van-Su;Yoon, Gi-Wan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.10a
    • /
    • pp.49-52
    • /
    • 2008
  • In this letter, we derive a tight closed form formula for an ergodic rapacity of a multiple-input multiple-output (MIMO) for the application of wireless communications. The derived expression is a simple close-form formula to determine the ergodic capacity of MIMO systems. Assuming the channels are independent and identically distributed (i.i.d.) Rayleigh flat-fading between antenna pairs, the ergodic capacity can be expressed in a closed form as the finite sum of exponential integrals.

  • PDF

A Simple Mixed-Based Approach for Thin-Walled Composite Blades with Two-Cell Sections

  • Jung Sung Nam;Park Il-Ju
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.11
    • /
    • pp.2016-2024
    • /
    • 2005
  • In this work, a mixed beam approach that combines both the stiffness and the flexibility methods has been performed to analyze the coupled composite blades with closed, two-cell cross-sections. The Reissner's semi-complementary energy functional is used to derive the beam force-displacement relations. Only the membrane part of the shell wall is taken into account to make the analysis simple and also to deliver a clear picture of the mixed method. All the cross section stiffness coefficients as well as the distribution of shear across the section are evaluated in a closed-form through the beam formulation. The theory is validated against experimental test data, detailed finite element analysis results, and other analytical results for coupled composite blades with a two-cell airfoil section. Despite the simple kinematic model adopted in the theory, an accuracy comparable to that of two-dimensional finite element analysis has been obtained for cases considered in this study.

Closed-Form Green's Function for the Analysis of Microstrip Structure (마이크로스트립 구조 해석을 위한 Closed-Form 그린 함수)

  • Yang, Seung-Woo;Kim, Sung-Jin;Kim, Gun-Woo;Lee, Taek-Kyung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.3
    • /
    • pp.281-293
    • /
    • 2008
  • In the layered medium, the Sommerfeld integral must be evaluated to calculate a space domain Green's function. The real axis integration method provides stable and accurate results over wide ranges of the observation distance and the singnal frequency. But this method has the in efficiency of approximation when the field point z is changed. Also, as the amplitude of z increases, the change of the spectral domain function is more rapidly. Therefore, the approximation is difficult when z becomes larger. In this paper, we propose a method to calculate an accurate closed-form Green's function for microstrip structure by using the closed-loop integration path.

Accurate Closed-Form Green′s Function for the Analysis of coplanar Waveguides (코플래너 도파로 해석을 위한 정확한 Closed-Form 그린함수)

  • Gang, Yeon-Deok;Lee, Taek-Gyeong
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.37 no.11
    • /
    • pp.23-31
    • /
    • 2000
  • In the layered medium, infinite Sommerfeld integral must be evaluated to calculate a space domain Green's function. The complex image method and the two-level method provide rapid calculation and accurate solutions in the near-field region. However, in the intermediate and far-field region, the solutions are inaccurate due to the deformation of the sampling contour. In this paper, we propose a method to calculate an accurate closed-form Green's function for coplanar structure by sampling data on the real axis.

  • PDF

Closed Form Formulas for Equivalent Damping Ratios of a Linear Structure Equipped with Damping Devices (제진장치가 설치된 구조물의 등가감쇠비)

  • Hwang, Jae-Seung;Lee, Sang-Hyun;Min, Kyung-Won
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.10a
    • /
    • pp.370-377
    • /
    • 2002
  • Hwang et al (2001) proposed a new method for an evaluation of equivalent damping ratios of a linear structure with linear or nonlinear damping devices. This procedure has a disadvantage that it requires time history analysis for the whole system including damping devices, which may be troublesome for practical application. To tackle this problem closed form formulas for equivalent damping ratios are proposed in this study. It is assumed that the responses of MDOF system can be reproduced by an equivalent SDOF system which vibrates in a fundamental mode. The numerical analyses of a ten-story building equipped with linear viscous damper or active mass damper or friction damper show the effectiveness of equivalent SDOF model and closed form formulas.

  • PDF

An Analysis of Inverse Kinematics and Singular Configuration for Six Axes Robot with Wrist Offset (ICEIC'04)

  • Lee YoungDae;Cho KumBae
    • Proceedings of the IEEK Conference
    • /
    • summer
    • /
    • pp.263-268
    • /
    • 2004
  • The inverse kinematics problem is to find a set of joint variable values that will place the end effector of a robot manipulator into a given pose. Pieper has shown that a sufficient condition for a manipulator to have a closed form solution is that three adjacent joint axes intersects, hence the six axes robot with spherical wrist allows closed form solution. But many industrial robots have a non-spherical wrist to provide a stronger wrist configuration so that they can handle heavy payloads. Also, the use of a non-spherical wrist can result in a cheap and simple wrist arrangement than when all three axes intersect at a common point. In these cases, closed form solutions cannot be found. Therefore numerical technique must be used to solve the inverse kinematics equations. This paper proposes a new algorithm that can be used for finding inverse kinematics solution of the six axes robot with non-spherical wrist. Computer simulations are provided to prove the usefulness of our method.

  • PDF

Closed form interaction surfaces for nonlinear design codes of RC columns with MC 90

  • Barros, M.H.F.M.;Ferreira, C.C.;Barros, A.F.M.
    • Computers and Concrete
    • /
    • v.2 no.1
    • /
    • pp.55-77
    • /
    • 2005
  • The closed form solution of the equilibrium equations in the ultimate design of reinforced concrete sections under biaxial bending is presented. The stresses in the materials are described by the Model Code 1990 equations. Computation of the integral equations is performed generally in terms of all variables. The deformed shape of the section in the ultimate conditions is defined by Heaviside functions. The procedure is convenient for the use of mathematical manipulation programs and the results are easily included into nonlinear analysis codes. The equations developed for rectangular sections can be applied for other sections, such as T, L, I for instance, by decomposition into rectangles. Numerical examples of the developed model for rectangular sections and composed sections are included.

The Forward Kinematics Solution for Casing Oscillator Using the Kinematic Inversion (기구학적 전이를 이용한 케이싱 오실레이터의 순기구학 해석)

  • 배형섭;백재호;박명관
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.11
    • /
    • pp.130-139
    • /
    • 2004
  • The Casing Oscillator is a bore file Equipment for the all-casing process. All-casing process is a method of foundation work in construction yard to oscillate steel Casing in the ground. The existing Casing Oscillator has some problem like not boring horizontally with disturbance and not driving Casing othor angle except horizon. To solve problem, the new structure Casing Oscillator is presented and studied. The performance of Casing Oscillator is improved by kinematics analysis. The Casing Oscillator is similar to the parallel manipulator in structure. So we obtain Inverse kinematics solution of Casing Oscillator easily. But it is difficult to solve forward kinematics of Casing Oscillator. T his paper presents a novel pose description corresponding to the structure characteristics of parallel manipulators. Through analysis on geometry theory, we obtain a new method of the closed-form solution to the forward kinematics using Kinematic Inversion. The closed-form solution contains two different meanings -analytical and real-time. So we reach the goal of practical application and control. Closed-form forward kinematics solution is verified by an inverse kinematics analysis. It shows that the method has a practical value for real -time control and inverse kinematics servo control.