• Title/Summary/Keyword: closed-form analysis

Search Result 687, Processing Time 0.022 seconds

Thermal vibration analysis of FGM beams using an efficient shear deformation beam theory

  • Safa, Abdelkader;Hadji, Lazreg;Bourada, Mohamed;Zouatnia, Nafissa
    • Earthquakes and Structures
    • /
    • v.17 no.3
    • /
    • pp.329-336
    • /
    • 2019
  • An efficient shear deformation beam theory is developed for thermo-elastic vibration of FGM beams. The theory accounts for parabolic distribution of the transverse shear strains and satisfies the zero traction boundary conditions on the on the surfaces of the beam without using shear correction factors. The material properties of the FGM beam are assumed to be temperature dependent, and change gradually in the thickness direction. Three cases of temperature distribution in the form of uniformity, linearity, and nonlinearity are considered through the beam thickness. Based on the present refined beam theory, the equations of motion are derived from Hamilton's principle. The closed-form solutions of functionally graded beams are obtained using Navier solution. Numerical results are presented to investigate the effects of temperature distributions, material parameters, thermal moments and slenderness ratios on the natural frequencies. The accuracy of the present solutions is verified by comparing the obtained results with the existing solutions.

Estimation of fuel operating ranges of fusion power plants

  • Slavomir Entler ;Jan Horacek ;Ondrej Ficker ;Karel Kovarik ;Michal Kolovratnik ;Vaclav Dostal
    • Nuclear Engineering and Technology
    • /
    • v.55 no.7
    • /
    • pp.2687-2696
    • /
    • 2023
  • The fuel operating ranges of fusion tokamak-based power plants are estimated using the improved engineering breakeven equation. The Lawson criterion equations are derived in the form of a triple product with a focus on engineering breakeven and the subbreakeven operating range. The relationship of fuel parameters to the power plant net efficiency is outlined. Analysis shows that the operating ranges of the suitable fuel parameters form a closed area, the size of which affects the net efficiency of the power plant. The obtained fuel operating ranges confirm the well-known fact that DT fuel is currently the only fusion fuel useable in tokamak-based fusion power plants. It is also shown that the energy utilization of pB fuel is possible in the subbreakeven operating range but is conditioned by the very high efficiency of the power plant equipment. For the utilization of DD, DHe3, and pB fuels, the required magnetic fields are indicatively estimated.

Crack Energy and Governing Equation of an Extensible Beam with Multiple Cracks (다중 균열을 갖는 신장 보의 균열 에너지와 지배방정식)

  • Shon, Sudeok
    • Journal of Korean Association for Spatial Structures
    • /
    • v.24 no.1
    • /
    • pp.65-72
    • /
    • 2024
  • This paper aims to advance our understanding of extensible beams with multiple cracks by presenting a crack energy and motion equation, and mathematically justifying the energy functions of axial and bending deformations caused by cracks. Utilizing an extended form of Hamilton's principle, we derive a normalized governing equation for the motion of the extensible beam, taking into account crack energy. To achieve a closed-form solution of the beam equation, we employ a simple approach that incorporates the crack's patching condition into the eigenvalue problem associated with the linear part of the governing equation. This methodology not only yields a valuable eigenmode function but also significantly enhances our understanding of the dynamics of cracked extensible beams. Furthermore, we derive a governing equation that is an ordinary differential equation concerning time, based on orthogonal eigenmodes. This research lays the foundation for further studies, including experimental validations, applications, and the study of damage estimation and detection in the presence of cracks.

Optimal Design of Vehicle Suspenion Systems Using Sensitivity Analysis (민감도 해석을 이용한 현가장치의 동역학적 최적설계)

  • 탁태오
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.2 no.3
    • /
    • pp.50-61
    • /
    • 1994
  • A method for performing dynamic design sensitivity analysis of vehicle suspension systems which have three dimensional closed-loop kinematic structure is presented. A recursive form of equations of motion for a MacPherson suspension system is derived as basis for sensitivity analysis. By directly differentiating the equations of motion with respect to design variables, sensitivity equations are obtained. The direct generalize for the application of multibody dynamic sensitivity analysis. Based on the proposed sensitivity analysis, optimal design of a MacPherson suspension system is carried out taking unsprung mass, spring and damping coefficients as design variables.

  • PDF

A Generalized Multicarrier Communication System - Part I: Theoretical Performance Analysis and Bounds

  • Imran Ali
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.9
    • /
    • pp.1-11
    • /
    • 2024
  • This paper develops a generalized framework for the analysis of multicarrier communication system, using a generic pair of transmitters- and receiver side terraforms, Qτ | QR, such that the DFT-transform based "conventional OFDM" is its special case. This analysis framework is then used to propose and prove theorems on various performance metrics of a multicarrier communication system, which will apply to any system that fits the architecture, which most will do. The analysis framework also derives previously unknown closed-form expressions for these metrics, such as how the performance degradation due to carrier frequency offset or timing synchronization error, amongst others, are function of generic transforms. While extensive work exists on the impact of these challenges on conventional OFDM, how are these functions of transform matrices is unknown in the literature. It will be shown, how the analysis of OFDM based system is special case of analysis in this paper. This paper is Part I of three paper series, where the other two supplements the arguments present here.

Modelling Technique and Model Analysis of Submerged Structures Using Finite Element Method and Boundary Element Method (유한요소법과 경계요소법을 이용한 수중에서의 탄성구조물의 진동모드해석 및 모델링 기법)

  • 김관주;오상륜
    • Journal of KSNVE
    • /
    • v.10 no.2
    • /
    • pp.319-324
    • /
    • 2000
  • This paper shows hot to model the submerged elastic structures and adequate analysis tools for modal behavior when using finite element and boundary element method. Four different cases are reviewed depending on the location of the water and air. First case is that structures are filled with air and water is located outside. Second case is opposite to case one. These cases are solved by direct approach using collocation procedure. Third case is that water is located both sides of structures. Last case is that air is located both sides. These cases are solved by indirect approach using variational procedure. As analysis tools harmonic frequency sweep analysis and eigenvalue iteration method are selected to obtain the natural frequencies of vibrating submerged structures depending on the cases. Results are compared with closed form solutions of submerged spherical shell.

  • PDF

A simplified matrix stiffness method for analysis of composite and prestressed beams

  • Deretic-Stojanovic, Biljana;Kostic, Svetlana M.
    • Steel and Composite Structures
    • /
    • v.24 no.1
    • /
    • pp.53-63
    • /
    • 2017
  • The paper presents the simplified matrix stiffness method for analysis of composite and prestressed beams. The method is based on the previously developed "exact" analysis method that uses the mathematical theory of linear integral operators to derive all relations without any mathematical simplifications besides inevitable idealizations related to the material rheological properties. However, the method is limited since the closed-form solution can be found only for specific forms of the concrete creep function. In this paper, the authors proposed the simplified analysis method by introducing the assumption that the unknown deformations change linearly with the concrete creep function. Adopting this assumption, the nonhomogeneous integral system of equations of the "exact" method simplifies to the system of algebraic equations that can be easily solved. Therefore, the proposed method is more suitable for practical applications. Its high level of accuracy in comparison to the "exact" method is preserved, which is illustrated on the numerical example. Also, it is more accurate than the well-known EM method.

Vibration Analysis of Multi-Span Timoshenko Beams Due to Moving Loads (여러 스팬을 갖는 티모센코 보 구조물의 이동하중에 의한 진동 해석)

  • Hong, Seong-Uk;Kim, Jong-Uk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.23 no.11 s.170
    • /
    • pp.2058-2066
    • /
    • 1999
  • The present paper proposes a new dynamic analysis method for multi-span Timoshenko beam structures supported by joints with damping subject to moving loads. An exact dynamic element matrix method is adopted to model Timoshenko beam structures. A generalized modal analysis method is applied to derive response formulae for beam structures subject to moving loads. The proposed method offers an exact and closed form solution. Two numerical examples are provided for validating and illustrating the proposed method. In the first numerical example, a single span beam with multiple moving loads is considered. A dynamic analysis on a multi-span beam under a moving load is considered as the second example, in which the flexibility and damping of supporting joints are taken into account. The numerical study proves that the proposed method is useful for the vibration analysis of multi-span beam-hype structures by moving loads.

A Generalized Modal Analysis for Multi-Stepped, Distributed-Parameter Rotor-Bearing Systems (다단 연속 회전체 베어링 계의 일반화된 모드 해석)

  • 박종혁;홍성욱
    • Journal of KSNVE
    • /
    • v.9 no.3
    • /
    • pp.525-534
    • /
    • 1999
  • The present paper proposes a generalized modal analysis procedure for non-uniform, distributed-parameter rotor-bearing systems. An exact element matrix is derived for a Timoshenko shaft model which contains rotary inertia, shear deformation, gyroscopic effect and internal damping. Complex coordinates system is adopted for the convenience in formulation. A generalized orthogonality condition is provided to make the modal decomposition possible. The generalized modal analysis by using a modal decomposition delivers exact and closed form solutions both for frequency and time responses. Two numerical examples are presented for illustrating the proposed method. The numerical study proves that the proposed method is very efficient and useful for the analysis of distributed-parameter rotor-bearing systems.

  • PDF

Generalized BER Analysis of Arbitrary Rectangular QAM (임의의 사각형 QAM의 일반화된 비트 오율 분석)

  • Yoon Dong-Weon;Cho, Kyong-Kuk;Suh, Ki-Bum
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.10A
    • /
    • pp.962-968
    • /
    • 2002
  • Reliable high-speed data communications over insufficient channel bandwidth is one of the major challenges of harsh wireless environments that push the achievable spectral efficiency far below its theoretical limits. A Quadrature amplitude modulation (QAM) scheme is a userful modulation technique for achieving high data rate transmission without increasing the bandwidth of wireless communication systems. The exact general bit error rate (BER) expression of arbitrary rectangular quadrature amplitude modulation has not yet been derived. In this paper, a generalized closed-form expression for the BER performance of rectangular QAM with Gray code bit mapping is derived and analyzed in the presence of additive white Gaussian noise (AWGN) channel. First we analyze the BER performance of an I-ary PAM scheme. Regular patterns in the k-th bit error probability are observed while developing the EBR expression. From these patterns we provide the exact and general closed-from EBR expression of an I-ary PAM. Then we present a general closed-from expression for BER of an arbitrary IXJ rectangular QAM by considering that this signaling format consists of two PAM scheme, i.e., I-ary and J-ary PAM. A simple approximate BER expression for rectangular QAM is given as well.