• Title/Summary/Keyword: clock gating

Search Result 33, Processing Time 0.022 seconds

The study on low power design of 8-bit Micro-processor with Clock-Gating (Clock-gating 을 고려한 저전력 8-bit 마이크로프로세서 설계에 관한 연구)

  • Jeon, Jong-Sik
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.2 no.3
    • /
    • pp.163-167
    • /
    • 2007
  • In this paper, to design 8 bit RISC Microprocessor, a method of Clock Gating to reduce electric power consumption is proposed. In order to examine the priority, the comparison results of between a 8 bit Microprocessor which is not considered Low Power consumption and which is considered Low Power consumption using a methods of Clock Gating are represented. Within the a few periods, the results of comparing with a Microprocessor not considered the utilization of Clock Gating shows that the reduction of dynamic dissipation is minimized up to 21.56%.

  • PDF

Design and FPGA Implementation of FBMC Transmitter by using Clock Gating Technique based QAM, Inverse FFT and Filter Bank for Low Power and High Speed Applications

  • Sivakumar, M.;Omkumar, S.
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.6
    • /
    • pp.2479-2484
    • /
    • 2018
  • The filter bank multicarrier modulation (FBMC) technique is one of multicarrier modulation technique (MCM), which is mainly used to improve channel capacity of cognitive radio (CR) network and frequency spectrum access technique. The existing FBMC System contains serial to parallel converter, normal QAM modulation, Radix2 inverse FFT, parallel to serial converter and poly phase filter. It needs high area, delay and power consumption. To further reduce the area, delay and power of FBMC structure, a new clock gating technique is applied in the QAM modulation, radix2 multipath delay commutator (R2MDC) based inverse FFT and unified addition and subtraction (UAS) based FIR filter with parallel asynchronous self time adder (PASTA). The clock gating technique is mainly used to reduce the unwanted clock switching activity. The clock gating is nothing but clock signal of flip-flops is controlled by gate (i.e.) AND gate. Hence speed is high and power consumption is low. The comparison between existing QAM and proposed QAM with clock gating technique is carried out to analyze the results. Conversely, the proposed inverse R2MDC FFT with clock gating technique is compared with the existing radix2 inverse FFT. Also the comparison between existing poly phase filter and proposed UAS based FIR filter with PASTA adder is carried out to analyze the performance, area and power consumption individually. The proposed FBMC with clock gating technique offers low power and high speed than the existing FBMC structures.

A Low Power UART Design by Using Clock-gating (클록 게이팅을 이용한 저전력 UART 설계)

  • Oh, Tae-Young;Song, Sung-Wan;Kim, Hi-Seok
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.865-868
    • /
    • 2005
  • This paper presents a Clock-gating technique that reduces power dissipation of the sequential circuits in the system. The Master Clock of a Clock-gating technique is formed by a quaternary variable. It uses the covering relationship between the triggering transition of the clock and the active cycles of various flip-flops to generate a slave clock for each flip-flop in the circuit. At current RTL designs flip-flop is acted by Master clock's triggering but the Slave Clock of Clock-gating technique doesn't occur trigger when external input conditions have not matched with a condition of logic table. We have applied our clocking technique to UART controller of 8bit microprocess

  • PDF

A Frequency Selection Algorithm for Power Consumption Minimization of Processor in Mobile System (이동형 시스템에서 프로세서의 전력 소모 최소화를 위한 주파수 선택 알고리즘)

  • Kim, Jae Jin;Kang, Jin Gu;Hur, Hwa Ra;Yun, Choong Mo
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.4 no.1
    • /
    • pp.9-16
    • /
    • 2008
  • This paper presents a frequency selection algorithm for minimization power consumption of processor in Mobile System. The proposed algorithm has processor designed low power processor using clock gating method. Clock gating method has improved the power dissipation by control main clock through the bus which is embedded clock block applying the method of clock gating. Proposed method has compared power consumption considered the dynamic power for processor, selected frequency has considered energy gain and energy consumption for designed processor. Or reduced power consumption with decreased processor speed using slack time. This technique has improved the life time of the mobile systems by clock gating method, considered energy and using slack time. As an results, the proposed algorithm reduce average power saving up to 4% comparing to not apply processor in mobile system.

A 23.52µW / 0.7V Multi-stage Flip-flop Architecture Steered by a LECTOR-based Gated Clock

  • Bhattacharjee, Pritam;Majumder, Alak;Nath, Bipasha
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.6 no.3
    • /
    • pp.220-227
    • /
    • 2017
  • Technology development is leading to the invention of more sophisticated electronics appliances that require long battery life. Therefore, saving power is a major concern in current-day scenarios. A notable source of power dissipation in sequential structures of integrated circuits is due to the continuous switching of high-frequency clock signals, which do not carry any information, and hence, their switching is eliminated by a method called clock gating. In this paper, we have incorporated a recent clock-gating style named Leakage Control Transistor (LECTOR)-based clock gating to drive a multi-stage sequential architectures, and we focus on its performance under three different process corners (fast-fast, slow-slow, typical-typical) through Monte Carlo simulation at 18 GHz clock with 90 nm technology. This gating is found to be one of the best gated approaches for multi-stage architectures in terms of total power consumption.

Reduction of the Number of Power States for High-level Power Models based on Clock Gating Enable Signals (클럭 게이팅 구동신호 기반 상위수준 전력모델의 전력 상태 수 감소)

  • Choi, Hosuk;Yi, Joonhwan
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.9
    • /
    • pp.28-35
    • /
    • 2015
  • In this paper, we propose to identify redundant power states of high-level power model based on clock gating enable signals(CGENs) using dependencies of Boolean functions and structural dependencies of clock gating cells. Three functional dependencies between two CGENs, namely equvalence, inversion, and inclusion, are used. Functions of CGENs in a circuit are represented by binary decision diagrams (BDDs) and the functional relations are used to reduce the number of power states. The structural dependency appears when a clock gating cell drives another clock gating cells in a circuit. Automatic dependency checking algorithm has been proposed. The experimental results show the average number of power state is reduced by 59%.

High-level Power Modeling of Clock Gated Circuits (클럭 게이팅 적용회로의 상위수준 전력 모델링)

  • Kim, Jonggyu;Yi, Joonhwan
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.10
    • /
    • pp.56-63
    • /
    • 2015
  • Not only performance analysis but also power analysis at early design stages is important in designing a system-on-chip. We propose a power modeling based on clock gating enable signals that enables accurate power analysis at a high-level. Power state is defined as combinations of the values of the clock gating enable signals and we can extract the clock gating enable signals to generate the power model automatically. Experimental results show that the average power accuracy is about 96% and the speed gain of power analysis at the high-level power is about 280 times compared to that at the gate-level.

Gated Clock-based Low-Power Technique based on RTL Synthesis (RTL 수준에서의 합성을 이용한 Gated Clock 기반의 Low-Power 기법)

  • Seo, Young-Ho;Park, Sung-Ho;Choi, Hyun-Joon;Kim, Dong-Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.3
    • /
    • pp.555-562
    • /
    • 2008
  • In this paper we proposed a practical low-power design technique using clock-gating in RTL. An efficient low-power methodology is that a high-level designer analyzes a generic system and designs a controller for clock-gating. Also the desirable flow is to derive clock-gating in normal synthesis process by synthesis tool than to insert directly gate to clock line. If low-power is considered in coding process, clock is gated in coding process. If not considered, after analyzing entire operation. clock is Bated in periods of holding data. After analyzing operation for clock-gating, a controller was designed for it, and then a low-power circuit was generated by synthesis tool. From result, we identified that the consumed power of register decreased from 922mW to 543mW, that is the decrease rate is 42%. In case of synthesizing the test circuit using synthesizer of Power Theater, it decreased from 322mW to 208mW (36.5% decrease).

10-Bit 200-MS/s Current-Steering DAC Using Data-Dependant Current-Cell Clock-Gating

  • Yang, Byung-Do;Seo, Bo-Seok
    • ETRI Journal
    • /
    • v.35 no.1
    • /
    • pp.158-161
    • /
    • 2013
  • This letter proposes a low-power current-steering digital-to-analog converter (DAC). The proposed DAC reduces the clock power by cutting the clock signal to the current-source cells in which the data will not be changed. The 10-bit DAC is implemented using a $0.13-{\mu}m$ CMOS process with $V_{DD}$=1.2 V. Its area is $0.21\;mm^2$. It consumes 4.46 mW at a 1-MHz signal frequency and 200-MHz sampling rate. The clock power is reduced to 30.9% and 36.2% of a conventional DAC at 1.25-MHz and 10-MHz signal frequencies, respectively. The measured spurious free dynamic ranges are 72.8 dB and 56.1 dB at 1-MHz and 50-MHz signal frequencies, respectively.

Low-Power Systolic Array Viterbi Decoder Implementation With A Clock-gating Method (Clock-gating 방법을 사용한 저전력 시스톨릭 어레이 비터비 복호기 구현)

  • Ryu Je-Hyuk;Cho Jun-Dong
    • The KIPS Transactions:PartA
    • /
    • v.12A no.1 s.91
    • /
    • pp.1-6
    • /
    • 2005
  • This paper presents a new algorithm on low power survivor path memory implementation of the trace-back systolic array Viterbi algorithm. A novel idea is to reuse the already-generated trace-back routes to reduce the number of trace-back operations. And the spurious switching activity of the trace-back unit is reduced by making use of a clock gating method. Using the SYNOPSYS power estimation tool, DesignPower, our experimental result shows the average $40{\%}$ power reduction and $23{\%}$ area increase against the trace-back unit introduced in [1].