• Title/Summary/Keyword: class semigroup

Search Result 43, Processing Time 0.021 seconds

On the Public Key Cryptosystems over Imaginary Quadratic Fields (복소 이차체위에서의 공개키 암호계에 관한 소고)

  • Kim, Yong-Tae
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.4 no.4
    • /
    • pp.270-273
    • /
    • 2009
  • In 1988, Buchmann et al. proposed a public key cryptosystem making use of ideals of the maximal orders in quadra tic fields which may pave the way for a public key cryptosystem using imaginary quadratic non-invertible ideals as generators. Next year, H$\ddot{u}$hnlein, Tagaki et al. published the cryptosystem with trapdoor and conductor prime p over non-maximal orders. On the other hand Kim and Moon proposed a public key cryptosystrem and a key distribution cry ptotsystem over class semigroup in 2003. We, in this paper, introduce and analyze the cryptotsystems mentioned above.

  • PDF

Interval-Valued Fuzzy Congruences on a Semigroup

  • Lee, Jeong Gon;Hur, Kul;Lim, Pyung Ki
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.13 no.3
    • /
    • pp.231-244
    • /
    • 2013
  • We introduce the concept of interval-valued fuzzy congruences on a semigroup S and we obtain some important results: First, for any interval-valued fuzzy congruence $R_e$ on a group G, the interval-valued congruence class Re is an interval-valued fuzzy normal subgroup of G. Second, for any interval-valued fuzzy congruence R on a groupoid S, we show that a binary operation * an S=R is well-defined and also we obtain some results related to additional conditions for S. Also we improve that for any two interval-valued fuzzy congruences R and Q on a semigroup S such that $R{\subset}Q$, there exists a unique semigroup homomorphism g : S/R${\rightarrow}$S/G.

GLOBALLY DETERMINED ALGEBRAS

  • Kang, Young-Yug
    • Communications of the Korean Mathematical Society
    • /
    • v.9 no.2
    • /
    • pp.285-291
    • /
    • 1994
  • This paper is a contribution to the study of the isomorphism problems for algebras. Among the isomorphism problems, that of global determination is investigated here. That is, our investigation of the problems is concerned with the question whether two algebras are isomorphic when their globals are isomorphic. The answer is not always affirmative. The counterexample, due to E. M. Mogiljanskaja, is the class of all infinite semigroups. But T. Tamura and J. Shafer [6] proved that the class of all groups is globally determined and announced the same result for the class of rectangular bands. Vazenin [7] proved that for any set X, the transformation semigroup $T_{X}$ must be isomorphic to any semigroup S for any P(S)$\simeq$P($T_{X}/TEX>).(omitted)

  • PDF

ON THE STRUCTURES OF CLASS SEMIGROUPS OF QUADRATIC NON-MAXIMAL ORDERS

  • KIM, YONG TAE
    • Honam Mathematical Journal
    • /
    • v.26 no.3
    • /
    • pp.247-256
    • /
    • 2004
  • Buchmann and Williams[1] proposed a key exchange system making use of the properties of the maximal order of an imaginary quadratic field. $H{\ddot{u}}hnlein$ et al. [6,7] also introduced a cryptosystem with trapdoor decryption in the class group of the non-maximal imaginary quadratic order with prime conductor q. Their common techniques are based on the properties of the invertible ideals of the maximal or non-maximal orders respectively. Kim and Moon [8], however, proposed a key-exchange system and a public-key encryption scheme, based on the class semigroups of imaginary quadratic non-maximal orders. In Kim and Moon[8]'s cryptosystem, a non-invertible ideal is chosen as a generator of key-exchange ststem and their secret key is some characteristic value of the ideal on the basis of Zanardo et al.[9]'s quantity for ideal equivalence. In this paper we propose the methods for finding the non-invertible ideals corresponding to non-primitive quadratic forms and clarify the structure of the class semigroup of non-maximal order as finitely disjoint union of groups with some quantities correctly. And then we correct the misconceptions of Zanardo et al.[9] and analyze Kim and Moon[8]'s cryptosystem.

  • PDF

SINGULARITIES AND STRICTLY WANDERING DOMAINS OF TRANSCENDENTAL SEMIGROUPS

  • Huang, Zhi Gang;Cheng, Tao
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.1
    • /
    • pp.343-351
    • /
    • 2013
  • In this paper, the dynamics on a transcendental entire semigroup G is investigated. We show the possible values of any limit function of G in strictly wandering domains and Fatou components, respectively. Moreover, if G is of class $\mathfrak{B}$, for any $z$ in a Fatou domain, there does not exist a sequence $\{g_k\}$ of G such that $g_k(z){\rightarrow}{\infty}$ as $k{\rightarrow}{\infty}$.

EXISTENCE AND CONTROLLABILITY RESULTS FOR NONDENSELY DEFINED STOCHASTIC EVOLUTION DIFFERENTIAL INCLUSIONS WITH NONLOCAL CONDITIONS

  • Ni, Jinbo;Xu, Feng;Gao, Juan
    • Journal of the Korean Mathematical Society
    • /
    • v.50 no.1
    • /
    • pp.41-59
    • /
    • 2013
  • In this paper, we investigate the existence and controllability results for a class of abstract stochastic evolution differential inclusions with nonlocal conditions where the linear part is nondensely defined and satisfies the Hille-Yosida condition. The results are obtained by using integrated semigroup theory and a fixed point theorem for condensing map due to Martelli.

REGULARITY OF SEMIGROUPS IN TERMS OF PYTHAGOREAN FUZZY BI-IDEALS

  • WARUD NAKKHASEN
    • Journal of applied mathematics & informatics
    • /
    • v.42 no.2
    • /
    • pp.333-351
    • /
    • 2024
  • In this paper, the concept of Pythagorean fuzzy sets are used to describe in semigroups. Then, some characterizations of regular (resp., intra-regular) semigroups by means of Pythagorean fuzzy left (resp., right) ideals and Pythagorean fuzzy (resp., generalized) bi-ideals of semigroups are investigated. Furthermore, the class of both regular and intra-regular semigroups by the properties of many kinds of their Pythagorean fuzzy ideals also being studied.

SOME RESULTS ON THE LOCALLY EQUIVALENCE ON A NON-REGULAR SEMIGROUP

  • Atlihan, Sevgi
    • Communications of the Korean Mathematical Society
    • /
    • v.28 no.1
    • /
    • pp.63-69
    • /
    • 2013
  • On any semigroup S, there is an equivalence relation ${\phi}^S$, called the locally equivalence relation, given by a ${\phi}^Sb{\Leftrightarrow}aSa=bSb$ for all $a$, $b{\in}S$. In Theorem 4 [4], Tiefenbach has shown that if ${\phi}^S$ is a band congruence, then $G_a$ := $[a]_{{\phi}^S}{\cap}(aSa)$ is a group. We show in this study that $G_a$ := $[a]_{{\phi}^S}{\cap}(aSa)$ is also a group whenever a is any idempotent element of S. Another main result of this study is to investigate the relationships between $[a]_{{\phi}^S}$ and $aSa$ in terms of semigroup theory, where ${\phi}^S$ may not be a band congruence.

(∈, ∈ ∨qk)-FUZZY IDEALS IN LEFT REGULAR ORDERED $\mathcal{LA}$-SEMIGROUPS

  • Yousafzai, Faisal;Khan, Asghar;Khan, Waqar;Aziz, Tariq
    • Honam Mathematical Journal
    • /
    • v.35 no.4
    • /
    • pp.583-606
    • /
    • 2013
  • We generalize the idea of (${\in}$, ${\in}{\vee}q_k$)-fuzzy ordered semi-group and give the concept of (${\in}$, ${\in}{\vee}q_k$)-fuzzy ordered $\mathcal{LA}$-semigroup. We show that (${\in}$, ${\in}{\vee}q_k$)-fuzzy left (right, two-sided) ideals, (${\in}$, ${\in}{\vee}q_k$)-fuzzy (generalized) bi-ideals, (${\in}$, ${\in}{\vee}q_k$)-fuzzy interior ideals and (${\in}$, ${\in}{\vee}q_k$)-fuzzy (1, 2)-ideals need not to be coincide in an ordered $\mathcal{LA}$-semigroup but on the other hand, we prove that all these (${\in}$, ${\in}{\vee}q_k$)-fuzzy ideals coincide in a left regular class of an ordered $\mathcal{LA}$-semigroup. Further we investigate some useful conditions for an ordered $\mathcal{LA}$-semigroup to become a left regular ordered $\mathcal{LA}$-semigroup and characterize a left regular ordered $\mathcal{LA}$-semigroup in terms of (${\in}$, ${\in}{\vee}q_k$)-fuzzy one-sided ideals. Finally we connect an ideal theory with an (${\in}$, ${\in}{\vee}q_k$)-fuzzy ideal theory by using the notions of duo and (${\in}{\vee}q_k$)-fuzzy duo.