References
- N. Abada, M. Benchohra, and H. Hammouche, Existence and controllability results for nondensely defined impulsive semilinear functional differential inclusions, J. Differential Equations 246 (2009), no. 10, 3834-3863. https://doi.org/10.1016/j.jde.2009.03.004
- M. Adimy, H. Bouzahir, and K. Ezzinbi, Existence for a class of partial functional differential equations with infinite delay, Nonlinear Anal. 46 (2001), no. 1, 91-112. https://doi.org/10.1016/S0362-546X(99)00447-2
- N. U. Ahmed, Nonlinear stochastic differential inclusions on Bananch space, Stochastic Anal. Appl. 12 (1994), 1-10. https://doi.org/10.1080/07362999408809334
- W. Arendt, Vector valued Laplace transforms and Cauchy problems, Israel J. Math. 59 (1987), no. 3, 327-352. https://doi.org/10.1007/BF02774144
- W. Arendt, Resolvent positive operators, Proc. London Math. Soc. (3) 54 (1987), no. 2, 321-349. https://doi.org/10.1112/plms/s3-54.2.321
- P. Balasubramaniam, Existence of solutions of functional stochastic differential inclusions, Tamkang J. Math. 33 (2002), no. 1, 35-43.
- P. Balasubramaniam, S. K. Ntouyas, and D. Vinayagam, Existence of solutions of semi-linear stochastic delay evolution inclusions in a Hilbert space, J. Math. Anal. Appl. 305 (2005), no. 2, 438-451. https://doi.org/10.1016/j.jmaa.2004.10.063
- P. Balasubramaniam and S. K. Ntouyas, Controllability for neutral stochastic functional differential inclusions with infinite delay in abstract space, J. Math. Anal. Appl. 324 (2006), no. 1, 161-176. https://doi.org/10.1016/j.jmaa.2005.12.005
- J. Banas and K. Goebel, Measures of Noncompactness in Banach Spaces, Dekker, New York, 1980.
- M. Benchohra, E. P. Gatsori, J. Henderson, and S. K. Ntouyas, Nondensely defined evolution impulsive differential inclusions with nonlocal conditions, J. Math. Anal. Appl. 286 (2003), no. 1, 307-325. https://doi.org/10.1016/S0022-247X(03)00490-6
- T. Caraballo, K. Liu, and A. Truman, Stochastic functional partial differential equations: existence, uniqueness and asymptotic decay property, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 456 (2000), no. 1999, 1755-1082.
- G. Da Prato and E. Sinestrari, Differential operators with nondense domain, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 14 (1987), no. 2, 285-344.
- G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions, Cambridge University Press, Cambridge, 1992.
- K. Deimling, Multivalued Differential Equations, de Gruyter, Berlin, 1992.
- K. Ezzinbi and J. Liu, Nondensely defined evolution equations with nonlocal conditions, Math. Comput. Modelling 36 (2002), no. 9-10, 1027-1038. https://doi.org/10.1016/S0895-7177(02)00256-X
- E. P. Gatsori, Controllability results for nondensely defined evolution differential inclu-sions with nonlocal conditions, J. Math. Anal. Appl. 297 (2004), no. 1, 194-211. https://doi.org/10.1016/j.jmaa.2004.04.055
- V. Kavitha and M. Mallika Arjunan, Controllability of non-densely defined impulsive neutral functional differential systems with infinite delay in Banach spaces, Nonlinear Anal. Hybrid Syst. 4 (2010), no. 3, 441-450. https://doi.org/10.1016/j.nahs.2009.11.002
- H. Kellerman and M. Hieber, Integrated semigroups, J. Funct. Anal. 84 (1989), no. 1, 160-180. https://doi.org/10.1016/0022-1236(89)90116-X
- A. Lasota and Z. Opial, An application of the Kakutani-Ky-Fan theorem in the theory of ordinary differential equations, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys. 13 (1965), 781-786.
- Y. Li and B. Liu, Existence of solution of nonlinear neutral stochastic differential in-clusions with infinite delay, Stochastic Anal. Appl. 25 (2007), no. 2, 397-415. https://doi.org/10.1080/07362990601139610
- M. Martelli, A Rothe's type theorem for non-compact acyclic-valued map, Boll, Un. Mat. Ital. (4) 11 (1975), no. 3, 70-76.
- H. R. Thieme, Integrated semigroups and integrated solutions to abstract Cauchy problems, J. Math. Anal. Appl. 152 (1990), no. 2, 416-477. https://doi.org/10.1016/0022-247X(90)90074-P
- H. R. Thieme, Semiflows generated by Lipschitz perturbations of non-densely defined operators, Differential Integral Equations 3 (1990), no. 6, 1035-1066.
- R. Subalakshmi and K. Balachandran, Approximate controllability of nonlinear sto-chastic impulsive integrodifferential systems in Hilbert spaces, Chaos Solitons Fractals 42 (2009), no. 4, 2035-2046. https://doi.org/10.1016/j.chaos.2009.03.166
- R. Subalakshmi, K. Balachandran, and J. Y. Park, Controllability of semilinear stochastic functional integrodifferential systems in Hilbert spaces, Nonlinear Anal. Hybrid Syst. 3 (2009), no. 1, 39-50. https://doi.org/10.1016/j.nahs.2008.10.004
- F. Wei and K. Wang, The existence and uniqueness of the solution for stochastic functional differential equations with infinite delay, J. Math. Anal. Appl. 331 (2007), no. 1, 516-531. https://doi.org/10.1016/j.jmaa.2006.09.020