• 제목/요약/키워드: clamped-clamped

검색결과 962건 처리시간 0.03초

3-D Vibration analysis of FG-MWCNTs/Phenolic sandwich sectorial plates

  • Tahouneh, Vahid
    • Steel and Composite Structures
    • /
    • 제26권5호
    • /
    • pp.649-662
    • /
    • 2018
  • In this study, based on the three-dimensional theory of elasticity, free vibration characteristics of sandwich sectorial plates with multiwalled carbon nanotube-(MWCNT)-reinforced composite core are considered. Modified Halpin-Tsai equation is used to evaluate the Young's modulus of the MWCNT/epoxy composite samples by the incorporation of an orientation as well as an exponential shape factor in the equation. The exponential shape factor modifies the Halpin-Tsai equation from expressing a straight line to a nonlinear one in the MWCNTs wt% range considered. In this paper, free vibration of thick functionally graded sandwich annular sectorial plates with simply supported radial edges and different circular edge conditions including simply supported-clamped, clamped-clamped, and free-clamped is investigated. A semi-analytical approach composed of two-dimensional differential quadrature method and series solution are adopted to solve the equations of motion. The material properties change continuously through the core thickness of the plate, which can vary according to a power-law, exponentially, or any other formulations in this direction. This study serves as a benchmark for assessing the validity of numerical methods or two-dimensional theories used to analysis of laminated sectorial plates.

자중에 의한 정적 처짐을 고려한 변단면 보의 자유진동 (Free Vibrations of Tapered Beams with Static Deflection due to Self-Weight)

  • 이병구;이태은;안대순;김영일
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 춘계학술대회논문집
    • /
    • pp.423-428
    • /
    • 2002
  • A numerical method is presented to obtain natural frequencies and mode shapes of tapered beams with static deflections due to self-weight. The differential equation governing the free vibrations of beam taken into account the static deflection due to self-weight is derived and solved numerically. The hinged-hinged, clamped-clamped and clamped-hinged and clamped-free end constraints are applied in the numerical examples. As the numerical results, the lowest three natural frequencies versus distributed slenderness ratio and section ratio are reported in figures. And for the comparison purpose, the typical mode shapes with the effects of static deflection are presented in figures.

  • PDF

워핑을 고려한 일축 대칭단면을 갖는 Timoshenko보의 휨-비틀림 연성진동 (Coupled Flexural-Torsional Vibrations of Timoshenko Beams of Monosymmetric Cross-Section including Warping)

  • 이병구;오상진;진태기;이종국
    • 소음진동
    • /
    • 제9권5호
    • /
    • pp.1012-1018
    • /
    • 1999
  • This paper deals with the coupled flexural-torsional vibrations of Timoshenko beams with monosymmetric cross-section. The governing differtial equations for free vibration of such beams are derived and solved numerically to obtain frequencies and mode shapes. Numerical results are calculated for three specific examples of beams with free-free, clamped-free, hinged-hinged, clamped-hinged and clamped-clamped end constraints. The effect of warping stiffess on the natural frequencies and mode shapes is discussed and it is concluded that substantial error can be incurred if the effect is ignored.

  • PDF

양단이 고정지지된 연속원통셸의 진동특성 해석 (Vibration Analysis of the Continuous Circular Cylindrical Shell with the Clamped-clamped Supports at Two End Edges)

  • 한창환;이영신
    • 한국소음진동공학회논문집
    • /
    • 제12권2호
    • /
    • pp.97-107
    • /
    • 2002
  • The continuous circular cylindrical shells are widely used for the high performance structures of aircraft, spacecraft, missile, nuclear fuel rod shell and so on. In this paper, a method for the vibrational analysis of the continuous circular cylindrical shells with the clamped-clamped supports at two end edges is developed by using the modal expansion method. Forces and/or moments acting on the shell surface are expressed in terms of the Dirac Delta Function. Frequency equation of the continuous shell is also derided by the application of the equilibrium of forces and the continuity of displacements at the boundary. Natural frequencies of the continuous shell are calculated numerically with mathematica 3.0 and they are compared with FEM results from the ANSYS 5.3 to improve the reliability of analytic solutions. Mode shares obtained by the FEM are Presented in this paper.

Exact solution for nonlinear vibration of clamped-clamped functionally graded buckled beam

  • Selmi, Abdellatif
    • Smart Structures and Systems
    • /
    • 제26권3호
    • /
    • pp.361-371
    • /
    • 2020
  • Exact solution for nonlinear behavior of clamped-clamped functionally graded (FG) buckled beams is presented. The effective material properties are considered to vary along the thickness direction according to exponential-law form. The in-plane inertia and damping are neglected, and hence the governing equations are reduced to a single nonlinear fourth-order partial-integral-differential equation. The von Kármán geometric nonlinearity has been considered in the formulation. Galerkin procedure is used to obtain a second order nonlinear ordinary equation with quadratic and cubic nonlinear terms. Based on the mode of the corresponding linear problem, which readily satisfy the boundary conditions, the frequencies for the nonlinear problem are obtained using the Jacobi elliptic functions. The effects of various parameters such as the Young's modulus ratio, the beam slenderness ratio, the vibration amplitude and the magnitude of axial load on the nonlinear behavior are examined.

양단 고정보의 크랙 검출에 대한 실험적 연구 (Experimental Study on Crack Detection of Clamped-clamped Beams)

  • 손인수;안성진;윤한익
    • 한국정밀공학회지
    • /
    • 제27권6호
    • /
    • pp.47-54
    • /
    • 2010
  • In this paper, the purpose is to study a method for detection of crack in clamped-clamped beams using the vibration characteristics. The natural frequency of beam is obtained by FEM and experiment. The governing differential equations of a Timoshenko beam are derived via Hamilton's principle. The two coupled governing differential equations are reduced to one fourth order ordinary differential equation in terms of the flexural displacement. The crack is assumed to be in the first mode of fracture and to be always opened during the vibrations. The differences between the actual and predicted crack positions and sizes are less than 9.8% and 28%, respectively.

점성감쇠가 건성마찰력을 받는 탄성지지 보의 안정성에 미치는 효과 (Effect of viscous Damping on the Stability of Beam Resting on an Elastic Foundation Subjected to Dry friction force)

  • 장탁순;고준빈;류시웅
    • 한국정밀공학회지
    • /
    • 제21권11호
    • /
    • pp.179-185
    • /
    • 2004
  • The effect of viscous damping on stability of beam resting on an elastic foundation subjected to a dry friction force is analytically studied. The beam resting on an elastic foundation subjected to dry friction force is modeled for simplicity into a beam resting on Kelvin-Voigt type foundation subjected to distributed follower load. In particular, the effects of four boundary conditions (clamped-free, clamped-pinned, pinned-pinned, clamped-clamped) on the system stability are considered. The critical value and instability type of columns on the elastic foundation subjected to a distributed follower load is investigated by means of finite element method for four boundary conditions. The elastic foundation modulus, viscous damping coefficient and boundary conditions affect greatly both the instability type and critical load. Also, the increase of damping coefficient raises the critical flutter load (stabilizing effect) but reduces the critical divergence load (destabilizing effect).

두께가 얇은 단면을 갖는 보의 진동특성 (Vibration Characteristics of Thin-Walled Beams)

  • 오상진;이재영;모정만;박광규
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 추계학술대회논문집
    • /
    • pp.709-712
    • /
    • 2004
  • A study of the coupled flexural-torsional vibrations of thin-walled beams with monosymmetric cross-section is presented. The governing differential equations for free vibration of such beams are solved numerically to obtain natural frequencies and their corresponding mode shapes. The beam model is based on the Bernoulli-Euler beam theory and the effect of warping is taken into consideration. Numerical results are given for two specific examples of beams with free-free, clamped-free, hinged-hinged, clamped-hinged and clamped-clamped end constraints both including and excluding the effect of warping stiffness. The effect of warping stiffness on the natural frequencies and mode shapes is discussed and it is concluded that substantial error can be incurred if the effect is ignored.

  • PDF

급수 함수를 이용한 임의 형상 고정단 평판의 자유 진동 해석 (Free Vibration Analysis of Clamped Plates with Arbitrary Shapes Using Series Functions)

  • 강상욱
    • 한국소음진동공학회논문집
    • /
    • 제17권6호
    • /
    • pp.531-538
    • /
    • 2007
  • A new method for free nitration analysis using series functions is proposed to obtain the eigenvalues of arbitrarily shaped, polygonal plates with clamped edges. Since a general solution used in the method satisfies the equation of motion for the transverse vibration of a plate, the method offers very accurate eigenvalues, compared to FEM or BEM results. In addition, the method can minimize the amount of numerical calculation because it has the advantage of not needing to divide the plate of interest. Two case studies show that the proposed method is valid and accurate when the eigenvalues by the proposed method are compared to those by FEM (NASTRAN) or another analytical method.

고정단 평판의 고정밀도 고유치 해석을 위한 효율적인 무요소법 개발 (Efficient Meshless Method for Accurate Eigenvalue Analysis of Clamped Plates)

  • 강상욱
    • 한국소음진동공학회논문집
    • /
    • 제25권10호
    • /
    • pp.653-659
    • /
    • 2015
  • A new formulation of the non-dimensional dynamic influence function method, which is a type of the meshless method, is introduced to extract highly accurate eigenvalues of clamped plates with arbitrary shape. Originally, the final system matrix equation of the method, which was introduced by the author in 1999, does not have a form of algebraic eigenvalue problem unlike FEM. As the result, the non-dimensional dynamic influence function method requires an inefficient process to extract eigenvalues. To overcome this weak point, a new approach for clamped plates is proposed in the paper and the validity and accuracy is shown in verification examples.