• Title/Summary/Keyword: circular loop

Search Result 97, Processing Time 0.025 seconds

Active Control Methods for Drag Reduction in Flow over Bluff Bodies (뭉툭한 물체 주위 유동에서 항력 감소를 위한 능동 제어 방법)

  • Choi Haecheon
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.11-16
    • /
    • 2002
  • In this paper, we present two successful results from active controls of flows over a circular cylinder and a sphere for drag reduction. The Reynolds number range considered for the flow over a circular cylinder is 40-3900 based on the free-stream velocity and cylinder diameter, whereas for the flow over a sphere it is $10^{5}$ based on the free-stream velocity and sphere diameter. The successful active control methods are a distributed (spatially periodic) forcing and a high-frequency (time periodic) forcing. With these control methods, the mean drag and lift fluctuations decrease and vortical structures are significantly modified. For example, the time-periodic forcing at a high frequency (larger than 20 times the vortex shedding frequency) produces $50{\%}$ drag reduction for the flow over a sphere at $Re=10^{5}$. The distributed forcing applied to the flow over a circular cylinder results in a significant drag reduction at all the Reynolds numbers investigated.

  • PDF

Study on Thermal Residual stresses and Transmission Characteristics in Loop Type Frequency Selective Surface Embedded Composite Structures (루프 종류의 FSS가 결합된 복합재료 구조의 잔류응력과 전파 투과 특성)

  • Park, Kyoung-Mi;Hwang, In-Han;Chun, Heoung-Jae;Hong, Ic-Pyo;Park, Yong-Bae;Kim, Yoon-Jae
    • Composites Research
    • /
    • v.26 no.5
    • /
    • pp.279-288
    • /
    • 2013
  • In this paper, the delamination and deformed FSS caused by residual stresses in the Loop type FSS embedded composites and the transmission characteristic changes due to deformation of FSS by residual stresses were studied. FSS may have different electromagnetic characteristics depending on the type of element, design variables, and array. Therefore, design variables of square loop FSS embedded composites structures were determined to obtain the transmission characteristic for X-band (8~12 GHz). Then the design variables of other types of loops (triangular loop and circular loop) were determined based on the dimensions of square loop. Thereafter, the residual stresses and transmission characteristics of FSS embedded composite structures with various single and double loop FSS's, and stacking sequence of composite laminates were compared.

Numerical Analysis and Flow Visualization Study on Two-phase Flow Characteristics in Annular Ejector Loop (환형 이젝터 루프 내부의 이상유동특성 파악을 위한 수치해석 및 유동가시화 연구)

  • Lee, Dong-Yeop;Kim, Yoon-Kee;Kim, Hyun-Dong;Kim, Kyung-Chun
    • Journal of the Korean Society of Visualization
    • /
    • v.9 no.4
    • /
    • pp.47-53
    • /
    • 2011
  • A water driven ejector loop was designed and constructed for air absorption. The used ejector was horizontally installed in the loop and annular water jet at the throat entrained air through the circular pipe placed at the center of the ejector. Wide range of water flow rate was provided using two kinds of pumps in the loop. The tested range of water flow rate was 100${\ell}$ /min to 1,000 ${\ell}$/min. Two-phase flow inside the ejector loop was simulated by CFD analysis. Homogeneous particle model was used for void fraction prediction. Water and air flow rates and pressure drop through the ejector were automatically recorded by using the LabView based data acquisition system. Flow characteristics and air bubble velocity field downstream of the ejector were investigated by two-phase flow visualization and PIV measurement based on bubble shadow images. Overall performance of the two-phase ejector predicted by the CFD simulation agrees well with that of the experiment.

Development of Loop Heat Pipe Using Bubble Jet (Bubble Jet을 이용한 Loop Heat Pipe의 개발)

  • Kong, Sang-Woon;Ha, Soo-Jung;Jang, Jeong-Wan;Hwang, Jong-Ho;Son, Kil-Jae;Lee, Hyun-Jik;Kim, Jong-Soo
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.1503-1506
    • /
    • 2009
  • Bubble jet loop heat pipe is a newly devised variation of heat pipe in which heat is effectively transported by the latent heat of evaporation and condensation as well as the heat capacity of circulating working fluid. The circulatory and oscillating motion of the working fluid becomes possible by the motion of bubble jet which is generated at a narrow circular gap. These bubbles are condensed at the condensing section. Bubble jet loop heat pipe makes it possible to carry heat long distances upward and horizontal directions. Because Its structure is a very simple and a low cost, it is available for the floor heating, vinyl house heating, the defrosting of heat pump system and home refrigerator.

  • PDF

Contour Error Analysis and Feed Controller Optimization for Machining Center (머시닝센터를 위한 윤곽오차 분석 및 이송축 제어기 최적화)

  • 김성현;윤강섭;이만형
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.12 no.3
    • /
    • pp.17-24
    • /
    • 2003
  • One of the most important performance criteria related to the gain tuning of controller for CNC machining center is the contour error. This study analyzed circular error by the axis-matched and mismatched cases. To reduce ellipse and radius error, it is necessary to set the gain for each axis to be same bandwidth and high response. Based on the analysis in the frequency domain, we simulate feed system by mathematical model and then predict bandwidth of each axis. For analysis of structure vibration while the each axis is moving, we try the various of measuring method and position loop is improved by jerk limit.

Mean moment effect on circular thin-walled tubes under cyclic bending

  • Chang, Kao-Hua;Pan, Wen-Fung;Lee, Kuo-Long
    • Structural Engineering and Mechanics
    • /
    • v.28 no.5
    • /
    • pp.495-514
    • /
    • 2008
  • In this paper, experimental and theoretical investigations of the effect of the mean moment on the response and collapse of circular thin-walled tubes subjected to cyclic bending are discussed. To highlight the influence of the mean moment effect, three different moment ratios r (minimum moment/ maximum moment) of -1, -0.5 and 0, respectively, were experimentally investigated. It has been found that the moment-curvature loop gradually shrinks with the number of cycles, and becomes stable after a few cycles for symmetric cyclic bending (r = -1). However, the moment-curvature loop exhibits ratcheting and increases with the number of cycles for unsymmetric cyclic bending (r = -0.5 or 0). In addition, although the three groups of tested specimens had three different moment ratios, when plotted in a log-log scale, three parallel straight lines describe the relationship between the controlled moment range and the number of cycles necessary to produce buckling. Finally, the endochronic theory combined with the principle of virtual work was used to simulate the relationship among the moment, curvature and ovalization of thin-walled tubes under cyclic bending. An empirical formulation was proposed for simulating the relationship between the moment range and the number of cycles necessary to produce buckling for thin-walled tubes subjected to cyclic bending with different moment ratios. The results of the experimental investigation and the simulation are in good agreement with each other.

Miniaturization of Circular Loop Antenna Using Meander Line for RFID Tag Applications (미앤더 라인을 이용한 RFID 태그용 원형 루프 안테나의 소형화)

  • Ryu, Hong-Kyun;Woo, Jong-Myung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.6 s.121
    • /
    • pp.591-601
    • /
    • 2007
  • In this paper, the miniaturized radio frequency identification(RFID) tag antennas used in UHF band$(908.5{\sim}914MHz)$ are designed and fabricated by using the circular loop antenna(CLA). Miniaturization of CLA was possible to transform the structure of circular loop into the structure of meander line. In the case of double meander line CLA is reduced up to 83% compared with the general type CLA. The $S_{11}$, -10 dB bandwidth, and gain of double meander line CLA were -11.9 dB, 12 MHz(1.3%), and -1.18 dBd. Also, a small half-wavelength CLA using double meander line is designed and fabricated for flat snack bag coated aluminum. The antenna is reduced up to 92.1% except ground. It shows the $S_{11}$ of -16.5 dB, -10 dB bandwidth of 48 MHz(5%) and gain of -0.58 dBd. The radiation pattern shows omni-directional pattern in z-y plane(x-axis pol.). Through this result, we can confirm that miniaturized type CLAs using meander lines are suitable for miniaturized RFIB tag antennas with the UHF band.

Development of Software Interpolator for Two-Axis Contouring Control (2축 윤곽제어를 위한 소프트웨어 보간자 개발에 관한 연구)

  • 김교형;이기설
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.2
    • /
    • pp.389-396
    • /
    • 1988
  • Microprocessor-based software DDA interpolator is developed and applied to two axis contouring control of X-Y table. Developed assembly program is composed of feedrate, linear and circular DDA interpolation routines. Reference-pulse type of open-loop stepping motor control system in which the micro-computer produces a sequence of reference pulses for each axis of motion is adopted. To test performance of the developed program, X-Y table drive system based on stepping motor and shaft encoder is designed. Conturing error of the system in linear and circular path is within .+-. 0.2mm under start stop pulse rate of stepping motor.

Equivalence Between Two Orthogonal Oriented Circular Loops and Planar Inveryed-F Antenna Array (직교형 원형 루프 안테나와 역 에프형 배열구조의 등가성 분석)

  • Kim, Jong-Sung;Park, Seung-Mo;Choi, Won-Kyu;Seong, Nak-Seon
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2005.11a
    • /
    • pp.289-292
    • /
    • 2005
  • Two planar inverted-F antenna (PIFA) arrays are proposed as an alternative model to generate input and radiation characteristics of two orthogonal oriented circular loops, which has polarization diversity, but inherent mechanical instability of two orthogonal loops, in particular, in installation and operation conditions. Two $1\times2$ PIFA sub-arrays are orthogonally placed on a ground plane and two different feeding networks are applied to control horizontal and vertical radiation current flows for each sub-array, respectively. Equivalence of scattering parameters and radiation patterns between two antennas are validated by the available commercial simulator.

  • PDF

A 2.4 GHz Bio-Radar System with Small Size and Improved Noise Performance Using Single Circular-Polarized Antenna and PLL (하나의 원형 편파 안테나와 PLL을 이용하여 소형이면서도 개선된 잡음 성능을 갖는 2.4 GHz 바이오 레이더 시스템)

  • Jang, Byung-Jun;Park, Jae-Hyung;Yook, Jong-Gwan;Moon, Jun-Ho;Lee, Kyoung-Joung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.12
    • /
    • pp.1325-1332
    • /
    • 2009
  • In this paper, we design a 2.4 GHz bio-radar system that can detect human heartbeat and respiration signals with small size and improved noise performance using single circular-polarized antenna and phase-locked loop. The demonstrated bio-radar system consists of single circular-polarized antenna with $90^{\circ}$ hybrid, low-noise amplifier, power amplifier, voltage-controlled oscillator with phase-locked loop circuits, quadrature demodulator and analog circuits. To realize compact size, the printed annular ring stacked microstrip antenna is integrated on the transceiver circuits, so its dimension is just $40\times40mm^2$. Also, to improve signal-to-noise-ratio performance by phase noise due to transmitter leakage signal, the phase-locked loop circuit is used. The measured results show that the heart rate and respiration accuracy was found to be very high for the distance of 50 cm without the additional digital signal processing.