• Title/Summary/Keyword: circular hole

Search Result 296, Processing Time 0.021 seconds

Free Vibration Analysis of a Circular Plate with an Eccentric Circular Hole by the Independent Coordinate Coupling Method (독립좌표연성법을 이용한 편심 된 원형 구멍을 갖는 원판의 자유진동해석)

  • Heo, Seok;Kwak, Moon-K.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.6
    • /
    • pp.681-689
    • /
    • 2008
  • This paper is concerned with the free vibration analysis of a circular plate with an eccentric circular hole by the Independent coordinate coupling method(ICCM). It was proved in the previous study that the ICCM can accurately predict the natural frequencies and mode shapes of the annular plates and can also be used for the free vibration analysis of the simply-supported circular plate with an eccentric circular hole. In this study, the clamped and free boundary conditions were considered for the circular plate. The numerical results show that the ICCM can be used effectively for the free vibration problem of circular plate with an eccentric hole compared to the finite element method.

A study on the stress distribution and plastic area propagation in the beams with a circular hole (원형공을 가진 보의 응력분포와 소성역 전파거동에 관한 연구)

  • 김희철;왕지석;이경호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.9 no.3
    • /
    • pp.225-239
    • /
    • 1985
  • The beams with a circular hole are often used for constructing structures. The center of the circular hole is normally located in neutral axis and the stress state around the hole due to bending moment is trivial. But the stress level around the hole due to shear force is expected to be significant especially in the case of beams made of shape steels. In this paper, the stress distributions around the circular hole of beams were presented. Using polar coordinates and generallized stress function, the formulas of stress components were derived. The aspects of plastic area propagations based on von Mises yield criteria were also shown graphically. In order to verify the formulas presented in this paper, a beam of I-shape steel with a circular hole was made and the strains around the hole were measured under various loading conditions. The experimental results were proved to coincide fairly well with the calculated values.

  • PDF

The Stress Distribution around the Hole with Pin-hole on Rotating Disc (회전체 원판의 원공주위의 핀홀에 의한 응력분포)

  • 한근조;안찬우;심재준;한동섭;이성욱;김병진
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.761-764
    • /
    • 2002
  • This paper deals with the stress concentration of the rotating disc in detail. We studied maximum stress of rotating disc with respect to the various parameter of circular hole such as position, size, number of the hole, then the mollified effect of maximum stress due to pin-hole around circular hole, using FEM, the results are as follows: 1. The more the number of circular hole and the further from the center, the maximum equivalent stress reduces. 2. When the pin-hole is located 60$^{\circ}$ from the x-axis, the maximum stress reduces significantly due to the effect of interference.

  • PDF

The Stress Analysis of the Cross Beam of the Electric Car-body according to the Change of Location and Shape of Circular Hole (원공 위치와 형상 변화에 따른 전동차 크로스 빔의 강도해석)

  • Jeon, Hyung-Yong;Sung, Rak-Won;Han, Geun-Jo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.9
    • /
    • pp.9-17
    • /
    • 1999
  • This investigation is the result of the structural analysis by finite element method for optimal design of the cross beam with circular holes of the electric car-body. in order to install the air pipe and electric wire pipe that correspond signal between electric machines for the control system and to reduce the weight of the electric car-body, several circular areas from a cross beam should be taken off. What we want to perform is the optimal design of a cross beam with circular holes to posses equal stress in comparison with no hole cross beam. first, no hole cross beam as basic modal be chosen, executing the analysis, reviewing the distribution of stress and displacement at each location. several parameter should be adopted from the cross beam geometry like the location and shape of the hole to affect the maximum stress and displacement. So the analysis was executed by finite element analysis for finding optimal design parameter to the change of the location and shape of the circular hole. finally, the optimal design of the cross beam with circular holes was obtained and the maximum equivalent stress was compared with no hole cross beam at each location.

  • PDF

The Strength Evaluation on Repaired Plain Woven CFRP Composite with a Circular Hole

  • Kwon, Oh-Heon;Park, Jun-Ho
    • International Journal of Safety
    • /
    • v.8 no.1
    • /
    • pp.1-5
    • /
    • 2009
  • The CFRP composite has unique properties that offer high strength and stiffness, even though it has light weight. Therefore it can be used in many industrial applications. When mechanical fasteners are used for joining composites, high stress concentrations appear near the edge of holes prepared for accommodating structural bolts and rivets. This presence of high stress concentrations can be a source of damage. The aim of this work is to evaluate fracture behavior and patterns of plain woven CFRP with circular hole and repairing patch element. The maximum strength and pattern for the plain woven carbon composite specimen with the repaired circular hole were examined. From the results, we show that repairing of the CFRP composite specimen with ($\pi$) 3~5 mm of circular hole diameter results in load rising effect and the repairing is more effective as bigger hole specimen.

FREE VIBRATION ANALYSIS OF CIRCULAR PLATE WITH ECCENTRIC HOLE SUBMERGED IN FLUID

  • Jhung, Myung-Jo;Choi, Young-Hwan;Ryu, Yong-Ho
    • Nuclear Engineering and Technology
    • /
    • v.41 no.3
    • /
    • pp.355-364
    • /
    • 2009
  • Circular plates with holes are extensively used in mechanical components. The existence of a hole in a circular plate results in a significant change in the natural frequencies and mode shapes of the structure. Especially if the hole is located eccentrically, the vibration behavior of these structures is expected to deviate significantly from that of a plate with a concentric hole. In addition, if the plate is in contact with or submerged in fluid, the situation is more complex. Therefore, in this study, an analytical method to determine the modal characteristics of a plate submerged in fluid is developed based on the finite Fourier-Bessel series expansion and Rayleigh-Ritz method and is verified by the finite element analysis using a commercial program. Also, the relationship between parameter variations and vibration modes is investigated. These results can be used as guidance for the modal analysis and damage detection of a circular plate with a hole.

Free Vibration Analysis of 4 Edges Clamped, Isotropic Square Plates with 2 Collinear Circular Holes (2개의 원형구멍이 있는 4변고정, 등방성 정사각형 판의 자유진동해석)

  • 이영신;이윤복
    • Journal of KSNVE
    • /
    • v.4 no.3
    • /
    • pp.283-295
    • /
    • 1994
  • This work presents the experimental and finite element analysis results for the free vibration of 4 edges clamped, isotropic square plates with 2 collinear circular holes. Natural frequencies of finite element analysis are obtained for the complete square plate, the square plates with a central circular hole and the square plates with 2 collinear circulare holes. And natural frequencies are experimentally measured for the complete square plate, the square plate with a central circular hole(d = 150 mm) and the square plates with 2 collinear circular holes. Agreement between experimental and FEM results is excellent. Mode shapes in special case are presented. The conclusions of the study are as follows. There is little variation of nondimensional frequency parameters for the first six mode when the aspect ratio of circular hole is less than 1/6 in the isotropic square plates with 2 collinear circular holes. And the first nondimensional frequency parameter doesn't vary as the aspect ratio of circular hole increase.

  • PDF

A Study on the Lightweight Design of a Cross Beam for Railway Passenger Coach (철도객차용 크로스 빔의 경량화 설계에 관한 연구)

  • Jang, Deuk-Yul;Jeon, Hyung-Yong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.5
    • /
    • pp.126-133
    • /
    • 2017
  • This report investigates the stress distribution according to the location and shape change of the circular hole for the lightweight design of the cross beam of a railway passenger car and studies the lightweight design. To design a lightweight cross beam with a circular hole, we selected the non-circular crossbeam as a basic model, examined the stress distribution and displacement by position and determined the location, shape, size and quantity of the hole for light weight. We analyzed the effects of the position and shape of the hole on the maximum equivalent stress and displacement. The influencing factors were set as the design parameters, and the stress value was examined according to the variation of each variable. By considering the stress value according to the change of each variable and selecting the design parameter with the narrowest scattering value of the stress at each position of the hollow cross beam with various hole positions and shapes, we studied a cross beam with a circle hole under identical load condition to have an equal stress distribution to that of a non-circular cross beam.

Exact deformation of an infinite rectangular plate with an arbitrarily located circular hole under in-plane loadings

  • Yang, Yeong-Bin;Kang, Jae-Hoon
    • Structural Engineering and Mechanics
    • /
    • v.58 no.5
    • /
    • pp.783-797
    • /
    • 2016
  • Exact solutions for stresses, strains, and displacements of a perforated rectangular plate by an arbitrarily located circular hole subjected to both linearly varying in-plane normal stresses on the two opposite edges and in-plane shear stresses are investigated using the Airy stress function. The hoop stress occurring at the edge of the non-central circular hole are computed and plotted. Stress concentration factors (the maximum non-dimensional hoop stresses) depending on the location and size of the non-central circular hole and the loading condition are tabularized.

Fatigue Crack and Delamination Behavior in the Composite Material Containing n Saw-cut and Circular Hole (I) - Aramid Fiber Reinforced Metal Laminates - (소컷 및 원공 주위의 피로균열 형태변화와 층간분리거동 (I) - 아라미드섬유 강화 금속적층재의 경우 -)

  • Song, Sam-Hong;Kim, Cheol-Woong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.1
    • /
    • pp.58-65
    • /
    • 2003
  • The aramid fiber reinforced metal laminates(AFRMLs) used for the wing part fair flight suffer the cyclic bending moment of variable amplitude during service. The fatigue crack propagation and delamination behavior in AFRMLs containing a saw-cut and circular hole was investigated using the average stress criterion(ASC) model. Mechanical tests were carried out using the cyclic bending moment of 4.9 N . m and delamination was observed by ultrasonic C-scan images. In case of AFRMLs containing a saw-cut fatigue crack propagated in aluminum matrix, inducing delamination. However, in case of AFRMLs containing a circular hole, delamination formed with two types under cyclic bending moment of 4.9 N . m. First, delamination formed along the fatigue crack in aluminum matrix. Second, delamination formed without any fatigue crack around the circular hole. Therefore, delamination was formed depending on the stress distribution near the circular hole.