• Title/Summary/Keyword: circular arch

Search Result 64, Processing Time 0.023 seconds

Long-term structural analysis and stability assessment of three-pinned CFST arches accounting for geometric nonlinearity

  • Luo, Kai;Pi, Yong-Lin;Gao, Wei;Bradford, Mark A.
    • Steel and Composite Structures
    • /
    • v.20 no.2
    • /
    • pp.379-397
    • /
    • 2016
  • Due to creep and shrinkage of the concrete core, concrete-filled steel tubular (CFST) arches continue to deform in the long-term under sustained loads. This paper presents analytical investigations of the effects of geometric nonlinearity on the long-term in-plane structural performance and stability of three-pinned CFST circular arches under a sustained uniform radial load. Non-linear long-term analysis is conducted and compared with its linear counterpart. It is found that the linear analysis predicts long-term increases of deformations of the CFST arches, but does not predict any long-term changes of the internal actions. However, non-linear analysis predicts not only more significant long-term increases of deformations, but also significant long-term increases of internal actions under the same sustained load. As a result, a three-pinned CFST arch satisfying the serviceability limit state predicted by the linear analysis may violate the serviceability requirement when its geometric nonlinearity is considered. It is also shown that the geometric nonlinearity greatly reduces the long-term in-plane stability of three-pinned CFST arches under the sustained load. A three-pinned CFST arch satisfying the stability limit state predicted by linear analysis in the long-term may lose its stability because of its geometric nonlinearity. Hence, non-linear analysis is needed for correctly predicting the long-term structural behaviour and stability of three-pinned CFST arches under the sustained load. The non-linear long-term behaviour and stability of three-pinned CFST arches are compared with those of two-pinned counterparts. The linear and non-linear analyses for the long-term behaviour and stability are validated by the finite element method.

Study of Convex Cyclone with Continuous Curve (연속적인 곡선으로 정의 되는 볼록한 형상의 사이클론에 대한 연구)

  • Heo, Kwang-Su;Seol, Seoung-Yun;Li, Zhen-Zhe
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2757-2762
    • /
    • 2007
  • A cyclone design concept named Convex cyclone was developed to reduce pressure losses. Contrary to conventional cylinder-on-con type cyclone, inner wall of Convex cyclone are defined with a continuous curve and it has convex shape body. The discontinuity of inner diameter variation rate of cylinder-on-con type cyclone cause additional pressure loss. Continuous wall of Convex cyclone prevent additional pressure loss. In order to verify Convex cyclone design concept, we make a comparative experiments between Stairmand HE and Convex cyclone. Experimental Convex cyclone designed based on Stairmand HE model, and inner wall are defined with circular arch. The experimental result clearly shows that Convex cyclone can achieve maximum 50% pressure loss reduction with a few percent of collection efficiency drop. In addition, the experimental results indicated the existence of optimum convexity, minimum pressure loss, of cyclone wall.

  • PDF

The Effects of Composite Laminate Layups on Nonlinear Buckling Behavior Using a Degenerated Shell Element (퇴화 쉘 요소를 사용한 적층복합재의 증분형 비선형 좌굴 현상 및 적층 레이업 효과)

  • Cho, Hee-Keun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.1
    • /
    • pp.50-60
    • /
    • 2016
  • Laminate composites have a number of excellent characteristics in aspects of strength, stiffness, bending, and buckling. Buckling and postbuckling analysis of laminate composites with layups of [90/0]2s, $[{\pm}45/90/0]s$, $[{\pm}45]2s$ has been carried using the Total Lagrangian nonlinear Newton-Raphson method. The formulation of a geometrically nonlinear composite shell element based on a nonlinear large deformation method is presented. The used element is an eight-node degenerated shell element with six degrees of freedom. Square, circular cylinder, and arch panel laminate geometries were analyzed to verify the effects of the layups on the buckling and postbuckling behavior. The results showed that the effects of laminate layups on bucking and postbuckling behavior and the present formulation showed very good agreement with existing references.

In-Plane Extensional Vibration Analysis of Curved Beams using DQM (미분구적법을 이용한 곡선보의 태평면 진동분석)

  • Kang, Ki-Jun;Kim, Byeong-Sam
    • Journal of the Korean Society of Safety
    • /
    • v.17 no.1
    • /
    • pp.99-104
    • /
    • 2002
  • DQM(differential quadrature method) is applied to computation of eigenvalues of the equations of motion governing the free in-plane vibration for circular curved beams including mid-surface extension and the effects of rotatory inertia. Fundamental frequencies are calculated for the members with various end conditions and opening angles. The results are compared with numerical solutions by other methods for cases in which they are available. The differential quadrature method gives good accuracy even when only a limited number of grid points is used.

Rain-wind induced vibrations of cables in laminar and turbulent flow

  • Peil, U.;Dreyer, O.
    • Wind and Structures
    • /
    • v.10 no.1
    • /
    • pp.83-97
    • /
    • 2007
  • In the last decades there have been frequent reports of oscillations of slender tension members under simultaneous action of rain and wind - characterized by large amplitudes and low frequencies. The members, e.g. cables of cable-stayed bridges, slightly inclined hangers of arch bridges or cables of guyed-masts, show a circular cross section and low damping. These rain-wind induced vibrations negatively affect the serviceability and the lifespan of the structures. The present article gives a short literature review, describes a mathematical approach for the simulation of rain-wind induced vibrations, sums up some examples to verify the calculated results and discusses measures to suppress the vibrations.

Free vibrations of inclined arches using finite elements

  • Chucheepsakul, Somchai;Saetiew, Wasuroot
    • Structural Engineering and Mechanics
    • /
    • v.13 no.6
    • /
    • pp.713-730
    • /
    • 2002
  • This paper presents a finite element approach for determining the natural frequencies for planar inclined arches of various shapes vibrating in three-dimensional space. The profile of inclined arches, represented by undeformed centriodal axis of cross-section, is defined by the equation of plane curves expressed in the rectangular coordinates which are : circular, parabolic, sine, elliptic, and catenary shapes. In free vibration state, the arch is slightly displaced from its undeformed position. The linear relationship between curvature-torsion and axial strain is expressed in terms of the displacements in three-dimensional space. The finite element discretization along the span length is used rather than the total are length. Numerical results for arches of various shapes are given and they are in good agreement with those reported in literature. The natural frequency parameters and mode shapes are reported as functions of two nondimensional parameters: the span to cord length ratio (e) and the rise to cord length ratio (f).

Estimation of lateral pile resistance incorporating soil arching in pile-stabilized slopes

  • Neeraj, C.R.;Thiyyakkandi, Sudheesh
    • Geomechanics and Engineering
    • /
    • v.23 no.5
    • /
    • pp.481-491
    • /
    • 2020
  • Piles installed in row(s) are used as an effective technique to improve the stability of soil slopes. The analysis of pile-stabilized slopes require a reliable prediction of lateral resistance offered by the piles. In this work, an analytical solution is developed to estimate the lateral resistance offered by the stabilizing piles in sand and c - 𝜙 soil slopes considering soil arching phenomenon. The soil arching in both horizontal direction (between the neighboring piles) and vertical direction (in the active wedge in front of the pile row) are studied and their effects are incorporated in the proposed model. The shape of soil arch is assumed to be circular and principal stress trajectories are defined separately for both modes of arching. Experimental and numerical studies found in literature were used to validate the proposed method. A detailed parametric analysis was performed to study the influence of pile diameter, center-to-center spacing, slope angle and angle of internal friction on the lateral pile resistance.

A numerical simulation method for the flow around floating bodies in regular waves using a three-dimensional rectilinear grid system

  • Jeong, Kwang-Leol;Lee, Young-Gill
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.8 no.3
    • /
    • pp.277-300
    • /
    • 2016
  • The motion of a floating body and the free surface flow are the most important design considerations for ships and offshore platforms. In the present research, a numerical method is developed to simulate the motion of a floating body and the free surface using a fixed rectilinear grid system. The governing equations are the continuity equation and Naviere-Stokes equations. The boundary of a moving body is defined by the interaction points of the body surface and the centerline of a grid. To simulate the free surface the Modified Marker-Density method is implemented. Ships advancing in regular waves, the interaction of waves by a fixed circular cylinder array and the response amplitude operators of an offshore platform are simulated and the results are compared with published research data to check the applicability. The numerical method developed in this research gives results good enough for application to the initial design stage.

A Study on the Nonlinear Dynamic Behaviors of Arches due to the Change of Shapes and Boundary conditions (형상과 단부조건에 따른 아치의 비선형 동적거동)

  • 여동훈;이상호
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.04a
    • /
    • pp.441-448
    • /
    • 1998
  • In this study, an explicit transient analysis program considering material and geometric nolinearities has been developed and used to analyze the dynamic behaviors of circular, parabolic, sinusoidal and catenary arches according to the change of shapes and boundary conditions. To understand dynamic behaviors of arches, first of all, the results of free vibration analysis for four kinds of arches are discussed. The results of transient analysis under impact loads we discussed in respect of boundary condition, change of height, and arch-shape. The dynamic behaviors of arches by nonlinear transient analysis considering both material and geometric nolinearities are also discussed.

  • PDF

The Effect of Initial Combined Load on the Lateral Free Vibration on the Arch and P-M Interactive Curve (아치의 곡률면외 자유진동 해석과 P-M 상관도 작성)

  • 전교영;한금호;한상윤;강영종
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.10a
    • /
    • pp.452-461
    • /
    • 2003
  • The effect of initial combined load on the lateral free vibration of arches is investigated. For the analysis, P-M interaction own for the arches are obtained. The arches are circular arches which have constant cross-section and simply supported. Also, the arches are subjected both radial uniform distributed load which results in an axial compression on the cross-section and end moments that cause uniform bending action at the same time. All analysis are performed by finite element method based on Kang and Yoo's curved beam theory.

  • PDF