DOI QR코드

DOI QR Code

Rain-wind induced vibrations of cables in laminar and turbulent flow

  • Peil, U. (Institute for Steel Structures, Technical University) ;
  • Dreyer, O. (Institute for Steel Structures, Technical University)
  • Received : 2006.04.03
  • Accepted : 2006.12.07
  • Published : 2007.02.25

Abstract

In the last decades there have been frequent reports of oscillations of slender tension members under simultaneous action of rain and wind - characterized by large amplitudes and low frequencies. The members, e.g. cables of cable-stayed bridges, slightly inclined hangers of arch bridges or cables of guyed-masts, show a circular cross section and low damping. These rain-wind induced vibrations negatively affect the serviceability and the lifespan of the structures. The present article gives a short literature review, describes a mathematical approach for the simulation of rain-wind induced vibrations, sums up some examples to verify the calculated results and discusses measures to suppress the vibrations.

Keywords

References

  1. Burgh, A. H. P. V. D. and Abramian, A. K. (2002), "On the modeling of rain-wind induced vibrations of a simple oscillator", Proceedings of the International Mechanical Engineering Congress & Exposition, New Orleans, 2002.
  2. Davenport, A. G. (1961), "The application of statistical concepts to the wind loading of structures", Proceedings, The Institution of Civil Engineers, London, 19, 449-472.
  3. den Hartog, J. P. (1952), Mechanische Schwingungen, Springer, Berlin Gottingen Heidelberg (in German).
  4. Dreyer, O. (2005), "Regen-Wind induzierte Seilschwingungen in laminarer und turbulenter Stromung", Dissertation Technische Universitat Braunschweig (in German).
  5. Geurts, C. P. W. and van Staalduinen, P. C. (1999), "Estimation of the effects of rain-wind induced vibration in the design stage of inclined stay cables", Proceedings of the 10th International Conference on Wind Engineering, Copenhagen, 885-891.
  6. Geurts, C. P. W., van Staalduinen, P. C., Vrouwenvelder, T. and Reusink, J. (1998), "Numerical modeling of rainwind induced vibration: Erasmus Bridge, Rotterdam", Struct. Eng. Int., 8, 129-135. https://doi.org/10.2749/101686698780489351
  7. Hikami, Y. (1986), "Rain vibrations of cables of cable-stayed bridges", J. Japan Associ. Wind Eng., 27, 17-28.
  8. Hocking, L. M. (1980), "Sliding and spreading of a thin two-dimensional drop", Quarterly Journal of Mechanics and Applied Mathematics, 34, 37-55.
  9. Irvine, M. (1992), "Cable structures", Proc. Dover Publications, New York.
  10. Lazaridis, N. (1985), Zur dynamischen Berechnung abgespannter Maste und Kamine in boigem Wind unter besonderer Berücksichtigung der Seilschwingungen, Dissertation Universitat der Bundeswehr Munchen (in German).
  11. Lüesse, G., Ruscheweyh, H., Verwiebe, C. and Günther, G. H. (1996), "Regen-Wind induzierte Schwingungserscheinungen an der Elbebrcke Domitz", Stahlbau, 65, 105-114 (in German).
  12. Main, J. A. and Jones, N. P. (1999), "Full-scale measurements of stay cable vibration", Proceedings of the 10th International Conference on Wind Engineering, Copenhagen, 963-971.
  13. Matsumoto, M., Saito, T., Masahiko, K., Hiromichi, S. and Nishizaki, T. (1995), "Response characteristics of rain-wind induced vibrations of stay cables of cable-stayed bridges", J. Wind Eng. Ind. Aerodyn., 57, 323-333. https://doi.org/10.1016/0167-6105(95)00010-O
  14. Matsumoto, M., Shiraishi, N., Kitazawa, M., Knisely, C., Shirato, H., Kim, Y. and Tsujii, M. (1990), "Aerodynamic behaviour of inclined circular cylinders-cable aerodynamics", J. Wind Eng. Ind. Aerodyn., 33, 63-72. https://doi.org/10.1016/0167-6105(90)90021-4
  15. Matsumoto, M., Yagi, T. and Tsushima, D. (1999), "Vortex induced vibration of inclined cables at high wind velocity", Proceedings of the 10th International Conference on Wind Engineering, 979-986.
  16. Nahrath, N. (2003), Regen-Wind induzierte Schwingungen, Dissertation Technische Universitat Braunschweig (in German).
  17. Pacheco, M. B., Fujino, Y. and Sulekh, A. (1993), "Estimation curve for modal damping in stay cables with viscous damper", J. Struct. Eng., 119, 1961-1979. https://doi.org/10.1061/(ASCE)0733-9445(1993)119:6(1961)
  18. Peil, U. and Nahrath, N. (2003a), "Modelling of rain-wind induced vibrations", Wind Struct., 6, 41-52. https://doi.org/10.12989/was.2003.6.1.041
  19. Peil, U. and Nahrath, N. (2003b), "Modelling of rain-wind induced vibrations", Proc. 11th Int. Conf. Wind Engineering, Lubbock, Texas (2003), 389-396.
  20. Saito, T., Matsumoto, M. and Kitazawa, M. (1994), "Rain-wind excitation of cables of cable-stayed Higashi-Kobe Bridge and cable vibration control", Proceedings of the International Conference of cable-stayed and suspension bridges, Deauville, 507-514.
  21. Schwarzkopf, D. and Sedlacek, G. (2005), "Regen-wind induzierte Schwingungen [blank] - [blank] Ein Berechnungsmodell auf der Grundlage der neusten Erkenntnisse", Stahlbau, 74, 901-907 (in German). https://doi.org/10.1002/stab.200590218
  22. Seidel, C. and Dinkler, D. (2004), "Phanomenologie und modellierung regen-wind induzierter schwingungen", Bauingenieur, 79, 145-154 (in German).
  23. Shinozuka, M. (1971), "Simulation of multivariate and multidimensional random processes", J. Acoust. Soc. America., 49, Part 2, 357-367. https://doi.org/10.1121/1.1912338
  24. Wang, Z.-H. (1994), Schwingungsverhalten der Abspannseile von Masten unter Berucksichtigung der Boenbelastung, Dissertation Universitat Karlsruhe (in German).
  25. Wang, L. Y. and Xu, Y. L. (2003), "Analytical study of wind-rain induced cable vibration: 2DOF model", Wind Struct., 6, 291-306. https://doi.org/10.1296/WAS2003.06.04.04
  26. Yamaguchi, H. (1990), "Analytical study on growth mechanism of rain vibrations", J. Wind Eng. Ind. Aerodyn., 33, 73-80. https://doi.org/10.1016/0167-6105(90)90022-5
  27. Zuo, D. and Jones, N. P. (2003), "Interpretation of observed damper performance in mitigating wind and rainwind induced stay-cable vibrations", Proceedings of the 11th International Conference on Wind Engineering, Lubbock, 2133-2140.

Cited by

  1. Experimental and theoretical simulations on wind–rain-induced vibration of 3-D rigid stay cables vol.320, pp.1-2, 2009, https://doi.org/10.1016/j.jsv.2008.07.009
  2. New developments in rain–wind-induced vibrations of cables vol.163, pp.2, 2010, https://doi.org/10.1680/stbu.2010.163.2.73
  3. Aerodynamic characteristics of an inclined and yawed circular cylinder with artificial rivulet vol.43, 2013, https://doi.org/10.1016/j.jfluidstructs.2013.08.002
  4. On oscillations of a beam with a small rigidity and a time-varying mass vol.78, pp.1, 2014, https://doi.org/10.1007/s11071-014-1451-9
  5. Analysis of Rain-Wind Induced Cable Vibration Using Spatially Measured Aerodynamic Coefficients vol.17, pp.7, 2014, https://doi.org/10.1260/1369-4332.17.7.961
  6. Numerical investigation of the coupled interaction between an unsteady aerodynamic flow field and a water film coating on a circular cylinder vol.54, 2015, https://doi.org/10.1016/j.jfluidstructs.2014.11.008
  7. Numerical simulation of rivulet evolution on a horizontal cable subject to an external aerodynamic field vol.26, pp.1, 2010, https://doi.org/10.1016/j.jfluidstructs.2009.09.003
  8. On the excitation mechanisms of rain–wind induced vibration of cables: Unsteady and hysteretic nonlinear features vol.122, 2013, https://doi.org/10.1016/j.jweia.2013.06.001
  9. Experimental investigation on spatial attitudes, dynamic characteristics and environmental conditions of rain–wind-induced vibration of stay cables with high-precision raining simulator vol.76, 2018, https://doi.org/10.1016/j.jfluidstructs.2017.09.006
  10. Volume Removed - Publisher's Disclaimer vol.13, 2011, https://doi.org/10.1016/S1876-6102(14)00454-8
  11. Simulation of Flow past Cable with Upper Rivulet on its Surface and Investigation of the Cable Dynamics vol.163-167, pp.1662-8985, 2010, https://doi.org/10.4028/www.scientific.net/AMR.163-167.4064
  12. Large eddy simulation of flow around a stay cable with an artificial upper rivulet vol.26, pp.4, 2007, https://doi.org/10.12989/was.2018.26.4.215