• Title/Summary/Keyword: chromatin remodeling

Search Result 52, Processing Time 0.022 seconds

A Minor Transactivation Effect of GATA-3 on its Target Sites in the Extrachromosomal Status

  • Lee, Gap-Ryol
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.12
    • /
    • pp.2056-2060
    • /
    • 2007
  • Transcription factor GATA-3 is the critical transcription factor for Th2 cell differentiation. In spite of its importance in Th2 cell differentiation, the molecular mechanism for its action in Th2 differentiation is poorly understood. Previous studies have suggested that GATA-3 may be involved in the chromatin remodeling in the Th2 cytokine locus. To determine whether GATA-3 exerts its effect on its target sites in the extrachromosomal status, cell transfection assay was performed. In this assay, 800 bp IL4 promoter-luciferase constructs linked with GATA-3 target sites were transfected into the M12 B cell line, D10 mouse Th2 cell lines, and human T lymphoma Jurkat cell lines with or without the GATA-3 expression vector. The GATA-3 effects on its target sites were minimal in the extrachromosomal status, supporting the previous propositions that GATA-3 functions at the chromatin level by remodeling chromatin structure.

Post-Translational Regulation of the RSF1 Chromatin Remodeler under DNA Damage

  • Min, Sunwoo;Choi, Yong Won;Yun, Hansol;Jo, Sujin;Ji, Jae-Hoon;Cho, Hyeseong
    • Molecules and Cells
    • /
    • v.41 no.2
    • /
    • pp.127-133
    • /
    • 2018
  • Chromatin remodeling factors are involved in many cellular processes such as transcription, replication, and DNA damage response by regulating chromatin structure. As one of chromatin remodeling factors, remodeling and spacing factor 1 (RSF1) is recruited at double strand break (DSB) sites and regulates ataxia telangiectasia mutated (ATM) -dependent checkpoint pathway upon DNA damage for the efficient repair. RSF1 is overexpressed in a variety of cancers, but regulation of RSF1 levels remains largely unknown. Here, we showed that protein levels of RSF1 chromatin remodeler are temporally upregulated in response to different DNA damage agents without changing the RSF1 mRNA level. In the absence of SNF2h, a binding partner of RSF1, the RSF1 protein level was significantly diminished. Intriguingly, the level of RSF1-3SA mutant lacking ATM-mediated phosphorylation sites significantly increased, and upregulation of RSF1 levels under DNA damage was not observed in cells overexpressing ATM kinase. Furthermore, failure in the regulation of RSF1 level caused a significant reduction in DNA repair, whereas reconstitution of RSF1, but not of RSF1-3SA mutants, restored DSB repair. Our findings reveal that temporal regulation of RSF1 levels at its post-translational modification by SNF2h and ATM is essential for efficient DNA repair.

Drosophila GAGA factor-FACT Complex and its Role in Hox Gene Expression

  • Nakayama, Takahiro;Shimojima, Tsukasa;Okada, Masahiro;Ueda, Hitoshi;Hirose, Susumu
    • Proceedings of the Korean Society of Sericultural Science Conference
    • /
    • 2003.10a
    • /
    • pp.19-22
    • /
    • 2003
  • Chromatin structure plays a critical role in the regulation of transcription. Drosophila GAGA factor directs chromatin remodeling to its binding sites. We found that Drosaphiia FACT, a heterodimer of dSPT16 and dSSRPl, is associated with GAGA factor through its dSSRPl subunit, binds to a nucleosome and facilitates GAGA factor-directed chromatin remodeling. Immunostaining of polytene chromosomes revealed colocalization of GAGA factor and FACT in many specific loci. (omitted)

  • PDF

α-Kleisin subunit of cohesin preserves the genome integrity of embryonic stem cells

  • Seobin Yoon;Eui-Hwan Choi;Seo Jung Park;Keun Pil Kim
    • BMB Reports
    • /
    • v.56 no.2
    • /
    • pp.108-113
    • /
    • 2023
  • Cohesin is a ring-shaped protein complex that comprises the SMC1, SMC3, and α-kleisin proteins, STAG1/2/3 subunits, and auxiliary factors. Cohesin participates in chromatin remodeling, chromosome segregation, DNA replication, and gene expression regulation during the cell cycle. Mitosis-specific α-kleisin factor RAD21 and meiosis-specific α-kleisin factor REC8 are expressed in embryonic stem cells (ESCs) to maintain pluripotency. Here, we demonstrated that RAD21 and REC8 were involved in maintaining genomic stability and modulating chromatin modification in murine ESCs. When the kleisin subunits were depleted, DNA repair genes were downregulated, thereby reducing cell viability and causing replication protein A (RPA) accumulation. This finding suggested that the repair of exposed single-stranded DNA was inefficient. Furthermore, the depletion of kleisin subunits induced DNA hypermethylation by upregulating DNA methylation proteins. Thus, we proposed that the cohesin complex plays two distinct roles in chromatin remodeling and genomic integrity to ensure the maintenance of pluripotency in ESCs.

Chromatin-remodeling Factor INI1/hSNF5/BAF47 Is Involved in Activation of the Colony Stimulating Factor 1 Promoter

  • Pan, Xuefang;Song, Zhaoxia;Zhai, Lei;Li, Xiaoyun;Zeng, Xianlu
    • Molecules and Cells
    • /
    • v.20 no.2
    • /
    • pp.183-188
    • /
    • 2005
  • INI1/hSNF5/BAF47 is a core component of the hSWI/ SNF ATP-dependent chromatin remodeling complex, and it has been implicated in regulating gene expression, cell division and tumorigenesis. We investigated whether INI1/hSNF5/BAF47 functions in activation of the colony stimulating factor 1 (CSF1) promoter in HeLa cells. Overexpression of INI1/hSNF5/BAF47 promoted CSF1 transcription, and siRNA targeting INI1/hSNF5/ BAF47 (siINI1) strongly inhibited the activity of the CSF1 promoter. We demonstrated that all conserved domains of INI1/hSNF5/BAF47 are needed for CSF1 transcription. ChIP experiment showed that INI1/ hSNF5/BAF47 is recruited to the region of the CSF1 promoter. Taken together, these results indicate that INI1/hSNF5/BAF47 is involved in activation of the CSF1 promoter.

Histone tail cleavage as a novel epigenetic regulatory mechanism for gene expression

  • Yi, Sun-Ju;Kim, Kyunghwan
    • BMB Reports
    • /
    • v.51 no.5
    • /
    • pp.211-218
    • /
    • 2018
  • Chromatin is an intelligent building block that can express either external or internal needs through structural changes. To date, three methods to change chromatin structure and regulate gene expression have been well-documented: histone modification, histone exchange, and ATP-dependent chromatin remodeling. Recently, a growing body of literature has suggested that histone tail cleavage is related to various cellular processes including stem cell differentiation, osteoclast differentiation, granulocyte differentiation, mammary gland differentiation, viral infection, aging, and yeast sporulation. Although the underlying mechanisms suggesting how histone cleavage affects gene expression in view of chromatin structure are only beginning to be understood, it is clear that this process is a novel transcriptional epigenetic mechanism involving chromatin dynamics. In this review, we describe the functional properties of the known histone tail cleavage with its proteolytic enzymes, discuss how histone cleavage impacts gene expression, and present future directions for this area of study.

Epigenetics and Psychiatric Disorders (Epigenetics와 정신장애)

  • Oh, Daeyoung;Yang, Byung-Hwan;Lee, Yu-Sang
    • Korean Journal of Biological Psychiatry
    • /
    • v.15 no.4
    • /
    • pp.243-253
    • /
    • 2008
  • In the post-genomic era, the mechanisms controlling activation of genes are thought to be more important. Gene-environment interactions are crucial in both development and treatment of psychiatric disorders as they are complex genetic disorders. Epigenetics is defined as a change of gene expression that occurs without a change of DNA sequence and can be heritable by certain mechanisms. Epigenetic changes play essential roles in control of gene activation. DNA methylation, chromatin remodeling and RNAi act as key mechanisms for epigenetic modifications of genes. Here, we review the basic mechanisms of epigenetics and discuss their potential involvement of human diseases, including psychiatric disorders.

  • PDF

Nuclear structures and their emerging roles in cell differentiation and development

  • Hye Ji Cha
    • BMB Reports
    • /
    • v.57 no.9
    • /
    • pp.381-387
    • /
    • 2024
  • The nucleus, a highly organized and dynamic organelle, plays a crucial role in regulating cellular processes. During cell differentiation, profound changes occur in gene expression, chromatin organization, and nuclear morphology. This review explores the intricate relationship between nuclear architecture and cellular function, focusing on the roles of the nuclear lamina, nuclear pore complexes (NPCs), sub-nuclear bodies, and the nuclear scaffold. These components collectively maintain nuclear integrity, organize chromatin, and interact with key regulatory factors. The dynamic remodeling of chromatin, its interactions with nuclear structures, and epigenetic modifications work in concert to modulate gene accessibility and ensure precise spatiotemporal control of gene expression. The nuclear lamina stabilizes nuclear shape and is associated with inactive chromatin regions, while NPCs facilitate selective transport. Sub-nuclear bodies contribute to genome organization and gene regulation, often by influencing RNA processing. The nuclear scaffold provides structural support, impacting 3D genome organization, which is crucial for proper gene expression during differentiation. This review underscores the significance of nuclear architecture in regulating gene expression and guiding cell differentiation. Further investigation into nuclear structure and 3D genome organization will deepen our understanding of the mechanisms governing cell fate determination.

Potential role of the histone chaperone, CAF-1, in transcription

  • Kim, Hye-Jin;Seol, Ja-Hwan;Cho, Eun-Jung
    • BMB Reports
    • /
    • v.42 no.4
    • /
    • pp.227-231
    • /
    • 2009
  • The eukaryotic genome forms a chromatin structure that contains repeating nucleosome structures. Nucleosome packaging is regulated by chromatin remodeling factors such as histone chaperones. The Saccharomyces cerevisiae H3/H4 histone chaperones, CAF-1 and Asf1, regulate DNA replication and chromatin assembly. CAF-1 function is largely restricted to non-transcriptional processes in heterochromatin, whereas Asf1 regulates transcription together with another H3/H4 chaperone, HIR. This study examined the role of the yeast H3/H4 histone chaperones, Asf1, HIR, and CAF-1 in chromatin dynamics during transcription. Unexpectedly, CAF-1 was recruited to the actively transcribed region in a similar way to HIR and Asf1. In addition, the three histone chaperones genetically interacted with Set2-dependent H3 K36 methylation. Similar to histone chaperones, Set2 was required for tolerance to excess histone H3 but not to excess H2A, suggesting that CAF-1, Asf1, HIR, and Set2 function in a related pathway and target chromatin during transcription.

Chromatin Interacting Factor OsVIL2 Is Required for Outgrowth of Axillary Buds in Rice

  • Yoon, Jinmi;Cho, Lae-Hyeon;Lee, Sichul;Pasriga, Richa;Tun, Win;Yang, Jungil;Yoon, Hyeryung;Jeong, Hee Joong;Jeon, Jong-Seong;An, Gynheung
    • Molecules and Cells
    • /
    • v.42 no.12
    • /
    • pp.858-868
    • /
    • 2019
  • Shoot branching is an essential agronomic trait that impacts on plant architecture and yield. Shoot branching is determined by two independent steps: axillary meristem formation and axillary bud outgrowth. Although several genes and regulatory mechanism have been studied with respect to shoot branching, the roles of chromatin-remodeling factors in the developmental process have not been reported in rice. We previously identified a chromatin-remodeling factor OsVIL2 that controls the trimethylation of histone H3 lysine 27 (H3K27me3) at target genes. In this study, we report that loss-of-function mutants in OsVIL2 showed a phenotype of reduced tiller number in rice. The reduction was due to a defect in axillary bud (tiller) outgrowth rather than axillary meristem initiation. Analysis of the expression patterns of the tiller-related genes revealed that expression of OsTB1, which is a negative regulator of bud outgrowth, was increased in osvil2 mutants. Chromatin immunoprecipitation assays showed that OsVIL2 binds to the promoter region of OsTB1 chromatin in wild-type rice, but the binding was not observed in osvil2 mutants. Tiller number of double mutant osvil2 ostb1 was similar to that of ostb1, suggesting that osvil2 is epistatic to ostb1. These observations indicate that OsVIL2 suppresses OsTB1 expression by chromatin modification, thereby inducing bud outgrowth.