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The nucleus, a highly organized and dynamic organelle, plays 
a crucial role in regulating cellular processes. During cell 
differentiation, profound changes occur in gene expression, 
chromatin organization, and nuclear morphology. This review 
explores the intricate relationship between nuclear architecture 
and cellular function, focusing on the roles of the nuclear 
lamina, nuclear pore complexes (NPCs), sub-nuclear bodies, 
and the nuclear scaffold. These components collectively main-
tain nuclear integrity, organize chromatin, and interact with 
key regulatory factors. The dynamic remodeling of chromatin, 
its interactions with nuclear structures, and epigenetic modifi-
cations work in concert to modulate gene accessibility and 
ensure precise spatiotemporal control of gene expression. The 
nuclear lamina stabilizes nuclear shape and is associated with 
inactive chromatin regions, while NPCs facilitate selective 
transport. Sub-nuclear bodies contribute to genome organization 
and gene regulation, often by influencing RNA processing. The 
nuclear scaffold provides structural support, impacting 3D ge-
nome organization, which is crucial for proper gene expression 
during differentiation. This review underscores the significance 
of nuclear architecture in regulating gene expression and gui-
ding cell differentiation. Further investigation into nuclear stru-
cture and 3D genome organization will deepen our understanding 
of the mechanisms governing cell fate determination. [BMB 
Reports 2024; 57(9): 381-387]

INTRODUCTION

The nucleus is a highly organized and dynamic organelle that 
plays a crucial role in maintaining cellular integrity and function. 
Its complex architecture, comprising chromatin and the nuclear 
structure, provides a tightly regulated environment for essential 

processes such as gene expression, DNA replication, and RNA 
processing. The nuclear envelope, consisting of a double lipid 
bilayer and nuclear pore complexes, separates the nucleus 
from the cytoplasm, allowing for the selective exchange of 
molecules and creating a unique nuclear microenvironment 
(1-3). Within the nucleus, chromatin is organized into distinct 
territories, with active and inactive regions that are dynami-
cally regulated by epigenetic modifications and chromatin 
remodeling complexes. The nuclear lamina, a dense fibrillar 
network beneath the inner nuclear membrane, provides struc-
tural support and helps maintain nuclear shape and mechanical 
stability (4, 5). Additionally, sub-nuclear structures, such as the 
nucleolus, nuclear speckles, and Cajal bodies, serve as spe-
cialized hubs for various nuclear processes, further contributing 
to the functional organization of the nucleus (6-10).

Recent advances in our understanding of nuclear architecture 
have begun to reveal the intricate interplay between nuclear 
structure and cellular differentiation. As cells differentiate into 
specific lineages, they undergo profound changes in gene 
expression, chromatin organization, and nuclear morphology. 
The dynamic remodeling of chromatin and its interactions 
with various nuclear structures, such as the nuclear lamina, 
nuclear pore complexes, and sub-nuclear bodies, are considered 
to play essential roles in fine-tuning gene expression patterns 
during differentiation (11-15). Epigenetic modifications, including 
DNA methylation and histone modifications, work in concert 
with chromatin remodeling complexes to modulate gene 
accessibility and ensure precise spatiotemporal control of gene 
expression (16-18). Furthermore, the spatial organization of 
chromatin within the nucleus, as seen in particular in its 
interactions with the nuclear periphery and inner nuclear 
scaffold, has emerged as an important factor in regulating cell 
type-specific gene expression programs (19, 20). As our knowle-
dge of the complex relationship between nuclear structure and 
cellular differentiation continues to expand, it becomes incre-
asingly clear that the nucleus is not merely a passive container 
for genetic material, but rather an active and dynamic organelle 
that plays a vital role in determining cell fate and function.

NUCLEAR STRUCTURE AND FUNCTION 

The nucleus, the commend center of the cell, is a highly 
structured organelle that is essential to maintain cell integrity 
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Fig. 1. Nuclear structure of a mammalian cell. The mammalian cell
nucleus is composed of chromatin and functional nuclear struc-
tures. The nuclear pore complex is embedded within the nuclear en-
velope, while the nuclear lamina lies beneath it. Inside the nucleus,
inner nuclear scaffold proteins and various sub-nuclear bodies can 
be found, including the nucleolus, nuclear speckles, Cajal bodies, 
and promyelocytic leukemia (PML) bodies. 

and function (Fig. 1). The nuclear envelope, composed of a 
double lipid bilayer, encloses the nucleus, separating the 
nucleoplasm from the cytoplasm and creating a unique 
environment. This separation is crucial for regulating 
processes, such as gene expression and DNA replication, in a 
controlled manner. Within the nuclear envelope are large 
multiprotein structures called nuclear pore complexes (NPCs), 
which are composed of various proteins known as nucleo-
porins. NPCs are well-known for their crucial role in regulating 
the selective exchange of molecules between the nucleus and 
the cytoplasm, thereby facilitating nucleocytoplasmic transport 
(3). Recent research has expanded our understanding of NPCs 
by identifying their role in regulating gene expression inde-
pendently of their transport functions (14). Of the two membranes 
of the nuclear envelope, the outer membrane is continuous 
with the endoplasmic reticulum, while the inner membrane is 
associated with the nuclear lamina, which is composed of 
lamin proteins (5). This structure provides mechanical support, 
maintaining the shape of the nucleus and organizing chro-
matin. Mutations in lamin proteins can lead to genetic disorders 
known as laminopathies, highlighting their crucial role in 
nuclear function (21).

Within the nucleus, DNA is packaged into chromatin, a 
complex of DNA and histone proteins. Chromatin exists in 
two forms: euchromatin, which is less condensed and actively 
transcribed, and heterochromatin, which is highly condensed, 
and in general, transcriptionally inactive. The dynamic organi-
zation of chromatin is crucial to regulate gene expression in 
response to developmental cues and environmental changes. 
Additionally, the nuclear scaffold, or nuclear matrix, is a 
framework of fibrous proteins that provides structural support 
to the nucleus, organizing its three-dimensional architecture 
and facilitating processes such as gene transcription and RNA 

processing (22, 23). This structural support is essential to 
maintain the shape and integrity of the nucleus, ensuring the 
proper functional organization of chromatin and the regulation 
of gene expression.

Sub-nuclear structures, or nuclear bodies, are distinct mem-
braneless regions within the nucleus that specialize in various 
nuclear processes. These include the nucleolus, nuclear speckles, 
Cajal bodies, and promyelocytic leukemia (PML) bodies. The 
nucleolus is primarily involved in ribosome biogenesis, while 
Cajal bodies function as hubs for ribonucleoprotein particle 
formation and RNA metabolism (8, 10, 24). Nuclear speckles 
play a crucial role in the storage and modification of pre- 
mRNA splicing factors (7, 25). PML bodies, though their pre-
cise role remains unclear, are implicated in processes such as 
post-translational regulation and stress response (26, 27). 
These sub-nuclear bodies primarily occupy the interchromatin 
space and are associated with factors involved in specific 
functions (6), contributing to the complex and dynamic 
organization of the nucleus. 

INTERPLAY BETWEEN NUCLEAR STRUCTURE AND 
CELL DIFFERENTIATION 

Cellular differentiation is a highly orchestrated process that 
involves the precise control of gene expression to drive the 
specialization of cells into distinct lineages. At the core of this 
process lies the complex interplay between chromatin structure, 
nuclear architecture, and gene regulation. Chromatin undergoes 
extensive remodeling during differentiation, resulting in alte-
red accessibility of genes to transcriptional machinery. Studies 
indicate that the three-dimensional organization of chromatin 
and its interactions with various nuclear structures, such as the 
nuclear lamina, nuclear pore complexes, sub-nuclear bodies, 
and nuclear scaffold, contribute to the modulation of gene 
expression patterns. As cells differentiate, they experience 
profound changes in their epigenetic landscape, chromatin 
conformation, and nuclear morphology that work in concert to 
establish and maintain cell type-specific gene expression pro-
grams. This section explores the intricate relationship between 
chromatin structure, nuclear architecture, and gene expression 
during cellular differentiation.

Epigenetic regulation and chromatin reorganization play a 
significant role in regulating gene expression during cell diffe-
rentiation. Epigenetic modifications, such as DNA methylation 
and histone modifications, serve as molecular markers that can 
activate or silence genes, without altering the underlying DNA 
sequence. These modifications are critical to determining cell 
fate, as they enable the dynamic and reversible regulation of 
gene activity in response to developmental signals and enviro-
nmental factors. For example, DNA methylation is typically 
associated with gene silencing influencing the binding of 
various regulatory proteins (16). Histone modifications encompass 
a diverse range of changes, including acetylation, methylation, 
and phosphorylation, which affect the chromatin compaction, 
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thereby modulating accessibility to transcriptional regulators. 
Chromatin remodeling complexes further facilitate these pro-
cesses by repositioning nucleosomes, thereby altering the 
chromatin landscape to either expose or shield regulatory 
regions of the genome (17, 18). The complex coordination 
between epigenetic modifications and chromatin structure en-
sures that specific sets of genes are precisely turned on or off 
during the various stages of development, allowing progenitor 
cells to develop into specialized cell types with distinct functions.

The spatial organization of chromatin within the nucleus 
influences gene expression by affecting the proximity of genes 
to transcriptional regulators (28-30). Actively transcribed genes 
are typically located in the euchromatin, which is less densely 
packed and more accessible, whereas inactive genes reside in 
the heterochromatin, which is tightly packed and less acce-
ssible. The positioning of genes relative to nuclear structures 
also impacts their expression. Genes near the nuclear peri-
phery tend to be transcriptionally silent, while those in the 
nuclear interior are often transcriptionally active. Recent studies 
have shown that the role of nuclear structures in the regulation 
of gene expression is also critical during cell differentiation 
and development. The 3D organization of chromatin changes 
dynamically during differentiation, leading to the rearrangement 
of gene accessibility and the activation of lineage-specific genes. 
Thus, the highly organized and dynamic structure of chro-
matin within the nucleus is essential for precise gene regu-
lation and cell differentiation, allowing genes to be expressed 
at the right time and space.

To further elucidate the intricate relationship between nuclear 
structure and cellular differentiation, it is crucial to examine 
specific components of nuclear architecture. The nuclear 
lamina, nuclear pore complexes, sub-nuclear bodies, and the 
inner nuclear scaffold all play vital roles in shaping the nuclear 
environment and influencing gene expression during differenti-
ation. These components contribute to the establishment and 
maintenance of cell type-specific gene expression programs 
through their interactions with chromatin and other nuclear 
factors. By exploring each of these elements in detail, we can 
gain a more comprehensive understanding of how nuclear 
architecture orchestrates cellular differentiation.

Nuclear lamina structure and its significance in cellular 
differentiation
The nuclear lamina, a dense fibrillar network that lies beneath 
the inner membrane of the nuclear envelope, is primarily 
composed of intermediate filament proteins, called lamins, 
which are classified into two types: A-type and B-type lamins 
(21, 31). Lamins and associated proteins form a filamentous 
meshwork, providing structural support to the nucleus and 
maintaining its shape and mechanical stability (5). This stru-
ctural framework stabilizes the integrity of the nucleus, while 
also playing a crucial role in organizing chromatin, influencing 
gene expression, and participating in various nuclear processes, 
such as DNA replication, transcription, and cell cycle progre-

ssion (32-35). By anchoring chromatin to the nuclear en-
velope, the lamina establishes distinct nuclear compartments 
that segregate active and inactive regions of the genome. This 
spatial organization is essential to maintaining gene expression 
patterns that are specific to cell type and function. For instance, 
genes that need to be silenced are often located in peripheral 
heterochromatin regions, where they are tightly packed and 
less accessible to transcriptional machinery. Conversely, 
actively transcribed genes are found in euchromatin regions, 
which are more centrally located and loosely packed, facilitating 
access by transcription factors and RNA polymerase.

During cell differentiation, the nuclear lamina undergoes 
significant remodeling to facilitate the necessary changes in 
the regulation of gene expression (11). Recent studies have 
also identified that Lamina-Associated Domains (LADs), regi-
ons of the genome that interact with the nuclear lamina, 
dynamically restructure during differentiation (4). This disco-
very has led to various investigations into the correlation between 
the relative positioning of genes at the nuclear lamina and the 
regulation of their expression. For example, nuclear lamina– 
genome interactions are involved in lineage commitment to 
cardiac and neural cells, and the relative positioning of genes 
to the nuclear lamina changes during the differentiation pro-
cess of myoblasts (36-38). Genes located within LADs often 
exhibit specific epigenetic marks, such as histone H3K9 meth-
ylation, which are associated with transcriptional repression, 
and epigenetic modifications are involved in facilitating this 
process (36). In fact, experiments involving the artificial tethering 
of genes to the nuclear lamina have demonstrated transcrip-
tional repression mediated by the repositioning of genes to the 
nuclear lamina in mouse fibroblasts (39). These findings 
underscore the role of the nuclear lamina and LADs in regu-
lating gene expression through spatial organization within the 
nucleus, highlighting their importance in the context of 
cellular differentiation.

Nuclear pore complexes and their impact on differentiation 
processes
Nuclear Pore Complexes (NPCs) are large protein assemblies 
that are embedded in the nuclear envelope, serving as gateways 
that regulate molecular transport between the nucleus and 
cytoplasm. These structures are crucial for maintaining cellular 
homeostasis by controlling the exchange of RNA, proteins, 
and other macromolecules (40). Composed of multiple proteins 
called nucleoporins, NPCs form a cylindrical structure with a 
central channel that facilitates selective molecular passage. 
Small molecules diffuse freely through this channel, while larger 
molecules, such as RNA and proteins, require active transport 
mediated by specific receptors. Interestingly, studies have 
demonstrated that NPC components influence the regulation 
of gene expression across various organisms, independent of 
their primary transport function (1, 41-43). For example, 
Nup153, a nucleoporin, is essential for maintaining pluripotency 
in mouse embryonic stem cells; its depletion leads to the dere-
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pression of developmental genes by affecting polycomb-repres-
sive complex 1 (PRC1) recruitment to chromatin. Similarly, 
Nup98 is involved in epigenetic memory, and has been shown 
to associate with MBD-R2/NSL and Trx/MLL histone-modifying 
complexes and regulate Hox gene expression in developing 
flies. By interacting with transcription factors, other NPC 
proteins, and epigenetic factors, these components can either 
activate or repress the expression of a wide range of genes, 
including those involved in developmental processes. 

The spatial arrangement of chromatin near NPCs also plays a 
role in regulating gene expression. Protein networks can anchor 
a subset of genes and their associated protein complexes to 
NPCs in the nuclear envelope, creating a microenvironment 
that allows for the distinct regulation of gene expression, such 
as transcriptional activation (2, 44-47). Intriguingly, the expression 
levels of various nucleoporins and transport proteins have 
been observed to vary during cell differentiation, and the 
expression of certain NPC components is required for cell fate 
determination and the differentiation process (12, 14). For 
instance, changes in expression levels of various nucleoporins 
were observed during mesenchymal stem cell differentiation 
(48). Moreover, during the neural differentiation of mouse 
embryonic stem cells, the expression of importin- subtype 
transport proteins undergoes precise regulation, with shifts in 
importin- subtype expression playing a crucial role in 
facilitating neural differentiation (49). The influence of these 
nucleocytoplasmic transport proteins on cellular processes, 
particularly cell differentiation, can be primarily attributed to 
the involvement of NPCs in the transport of diverse trans-
cription factors, differentiation regulators, and pluripotency 
factors. As these factors are shuttled between the nucleus and 
cytoplasm, their spatial and temporal distribution can signifi-
cantly impact gene expression patterns, and ultimately, cell 
fate decisions. To fully elucidate the complex roles of NPCs in 
differentiation, further research focusing on various stages of 
the process is necessary.

Sub-nuclear bodies and their associations with cell 
differentiation processes
Sub-nuclear bodies are specialized, membraneless structures 
within the nucleus that play diverse roles in regulating various 
nuclear functions. These structures include the nucleolus, Cajal 
bodies, nuclear speckles, and PML bodies, each with distinct 
functions. The nucleolus, one of the most noticeable structures 
observed in cells under phase contrast microscopy, is primarily 
involved in ribosome biogenesis, synthesizing ribosomal RNA 
(rRNA) and assembling it with ribosomal proteins to form 
ribosomes, which are essential for protein synthesis (10). Cajal 
bodies, which are distinguished by the presence of coiled 
threads of the marker protein coilin (50), serve as preassembly 
sites for transcriptosomes and contain protein components 
essential for the transcription and processing of nuclear RNAs, 
effectively functioning as hubs for ribonucleoprotein (RNP) 
particle formation and RNA metabolism (8, 24). Nuclear speckles, 

rich in pre-mRNA splicing factors and commonly identified by 
the marker SC35 (9), play a crucial role in the storage and 
modification of these factors, ensuring efficient splicing and 
processing of pre-mRNAs (7, 25). The precise role of other 
sub-nuclear bodies, such as PML bodies, remains elusive (26, 27, 
51, 52). PML bodies form around the PML protein, a tumor 
suppressor that polymerizes into punctate structures and recruits 
many seemingly unrelated partner proteins. While these struc-
tures are implicated in a broad spectrum of biological processes, 
including post-translational control and stress response, a uni-
fying biochemical function has yet to be clearly defined.

The composition and dynamics of sub-nuclear bodies are 
notably associated with cellular differentiation and development. 
As cells differentiate, they experience alterations in gene ex-
pression and nuclear organization, which are accompanied by 
changes in sub-nuclear structures. For example, when cells 
differentiate from embryonic stem cells to neural progenitor 
cell, the nucleolus undergoes dramatic changes in size and 
number as cells differentiate, with a general trend towards a 
greater number of smaller nucleoli in the differentiated cells 
(53-55). This change appears to reflect a decrease in ribosome 
biogenesis and a shift toward more specialized cellular functions. 
Similarly, the number of Cajal bodies varies, but tends to be 
higher in the early stages of embryo development and to 
decrease upon differentiation, which somewhat correlates with 
the transcriptional and metabolic activity of the cells (13, 24). 
In contrast, the number and size of PML bodies have been 
shown to vary during differentiation, as observed in hemato-
poietic and prostate cells, possibly reflecting their dispensable 
role during development (51, 56). Emerging studies demonstrate 
that the proximity of chromatin to nuclear speckles is asso-
ciated with gene expression that can regulate cell differentiation 
(9, 57). For example, the chromatin architectural protein CTCF 
forms stress-sensitive complexes localizing to nuclear speckles 
during specific stages of neuronal commitment but not in 
differentiated neurons. The mechanism linking nuclear speckles 
and gene expression levels is mediated by the dynamic pro-
perties of the 3D genome architecture, where genes located 
closer to nuclear speckles tend to exhibit higher levels of 
transcription and splicing. This spatial organization is likely 
due to the high concentration of splicing factors within nuclear 
speckles, offering insights into how the nuclear environment 
influences gene regulation and contributes to the process of 
cellular differentiation.

Inner nuclear scaffold architecture and its impact on cellular 
differentiation
The nuclear scaffold, also known as the nuclear matrix, is a 
complex network of fibrogranular proteins and RNA that forms 
a structural framework within the nucleus of eukaryotic cells. 
This matrix structure was identified through a series of seque-
ntial salt extractions, detergent, and DNase treatments (58, 59). 
The nuclear matrix has been implicated in organizing chromatin 
structure by providing attachment sites for matrix attachment 
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regions (MARs) to MAR-binding proteins, thereby forming chro-
matin loops (60). Although the interaction between chromatin 
and the nuclear matrix was predicted to influence many 
biological functions, it has only recently been thoroughly inve-
stigated at the molecular level (61). Efforts to identify components 
of nuclear matrix proteins have led to the identification of 
nuclear lamins, nucleolar proteins, and inner nuclear proteins, 
such as heterogeneous nuclear ribonucleoproteins and nuclear 
matrins, which were named after their discovery as major 
nuclear matrix components (62). Among these, Matrin-3 has 
gained attention due to its abundance in the nucleus and 
recent studies suggesting its specific functions, emphasizing 
the role of inner nuclear proteins (63). Matrin-3 associates with 
other structural and regulatory factors in the nucleus, controls 
RNA processing, and coding mutations in its gene have been 
linked to rare genetic disorders (64-66). Very recently, the 
regulatory role of Matrin-3 at the chromatin level and in 
transcriptional control has been proposed, highlighting its 
more direct involvement in the regulation of gene expression, 
further expanding our understanding of the roles of nuclear 
matrix components in maintaining nuclear structure and 
regulating cellular processes (19, 23, 67).

While the role of nuclear membrane proteins, such as 
lamins, in regulating gene accessibility during differentiation 
has been well-established, the contribution of nucleoplasmic 
proteins, which constitute a large component of the inner 
nucleus, to chromatin remodeling during transcription and 
differentiation remains less explored. Studies have shown that 
hnRNP components, such as SAF-A/hnRNP U and SAF-B, 
contribute to the organization and regulation of chromatin 
structure (68, 69). In the context of development, Matrin-3, 
another inner nuclear protein, has been suggested to maintain 
the undifferentiated state of neural stem cells, albeit limited to 
morphological observations (70). A more direct relationship 
between inner nuclear scaffold proteins and differentiation was 
recently examined using Matrin-3. In erythroid cells, Matrin-3 
was found to interact with architectural proteins, such as CTCF 
and cohesin, stabilizing chromatin structure and negatively 
regulating differentiation (19). This association was also 
observed in mouse embryonic stem cells and muscle cells, 
suggesting that the role of Matrin-3 in coordinating chromatin 
organization and gene expression during cellular differentiation 
may be more general (19, 20). These findings provide new 
insights into the complex interplay between nuclear architecture 
and cell fate determination, underscoring the importance of 
inner nuclear scaffold proteins in this process.

CONCLUSION

The intricate relationship between nuclear structure and 
cellular differentiation is an intriguing area of research that has 
gained notable attention in recent years. As evidenced by the 
studies discussed in this review, the nucleus is a highly 
organized and dynamic organelle that undergoes profound 

changes during the process of cellular differentiation. The 
complex interplay between chromatin structure, epigenetic 
modifications, and nuclear architecture plays a crucial role in 
regulating gene expression and driving cell fate decisions. The 
nuclear lamina, nuclear pore complexes, sub-nuclear bodies, 
and inner nuclear scaffold all contribute to the functional 
organization of the nucleus, and have been implicated in 
various aspects of cellular differentiation. As cells differentiate, 
they undergo significant remodeling of chromatin and altera-
tions in the spatial arrangement of genes, which are mediated 
by interactions with these nuclear structures. Epigenetic modifi-
cations and chromatin remodeling complexes further fine-tune 
gene expression patterns, ensuring precise control over cell 
type-specific transcriptional programs.

Despite the significant progress made in understanding the 
relationship between nuclear structure and cellular differen-
tiation, many questions remain unanswered. Future research 
could concentrate on further elucidating the molecular 
mechanisms underlying the dynamic changes in nuclear archi-
tecture during differentiation, as well as the specific roles of 
individual nuclear components in regulating gene expression 
and cell fate. Emerging approaches for future investigation 
include the use of degrader molecules for dynamic regulation 
of protein expression and the application of high-resolution 
chromatin capture techniques. These advanced approaches 
could provide unprecedented insights into the temporal dynamics 
of nuclear reorganization and the fine-scale chromatin interac-
tions that occur during cellular differentiation. As our knowledge 
of the nucleus continues to expand, it will deepen our under-
standing of the fundamental principles governing cellular 
differentiation, while also potentially leading to the development 
of novel therapeutic strategies for diseases associated with 
aberrant nuclear structure and function. The study of nuclear 
structure and its role in cellular differentiation therefore repre-
sents an exciting and rapidly evolving field that promises to 
provide new insights into the complex mechanisms underlying 
cell fate determination and organismal development.
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