• Title/Summary/Keyword: chl-${\alpha}$ concentration

Search Result 50, Processing Time 0.028 seconds

Grazing Effects of Freshwater Bivalve Unio douglasiae on the Hibernal Diatom Bloom in the Eutrophic Lake and Stream (저온기 부영양 수계의 규조 발생에 대한 말조개의 섭식특성)

  • Lee, Song-Hee;Hwang, Soon-Jin;Kim, Baik-Ho
    • Korean Journal of Ecology and Environment
    • /
    • v.41 no.2
    • /
    • pp.237-246
    • /
    • 2008
  • Filtration rates and fecal production of freshwater bivalve, Unio douglasiae on two kinds of hibernal diatom communities were measured simultaneously in a laboratory. One community is the Han River (HAN), which dominated by Asterionella Formosa. Stephanodiscus hantzschii (ca. 98% of total phytoplankton). The other community is the Ilgam Lake (IL), which dominated by Synedra ulna, Scenedesmus sp. Microcystis aeruginosa (ca. 82%). The HAN water has higher concentrations of nutrient (TN and TP) and chlorophyll $\alpha$ (Chl-$\alpha$), lower turbidity and conductivity than the IL water. Water sampling for the feeding experiment was conducted in the same day (Jan 15, 2008) and similar time (AM 10:00 for HAN, AM 11:00 for IL). Mussels with the similar size ($0.0{\pm}0.5\;cm$) were collected from the Gunsan and Okgu district (Jeonbuk), and starved in a laboratory for 2 days before the experiment. The experiment comprised CON (no addition of mussel), LOW (addition of mussel at 0.3 indiv. $L^{-1}$), MID (1.0 indiv. $L^{-1}$) and HIGH (2.0 indiv. $L^{-1}$), respectively. With the increment of mussel density and time, the concentration of Chl-$\alpha$ in two diatom communities were clearly decreased; Chl-$\alpha$ of HAN gradually decreased after 1 hour of mussel treatment, while that of IL decreased as soon as mussel introduction. In 7 hours of treatment, the former was removed finally up to about 90% of control, while the later was remained as about 50%. Under the presence of mussel, total phytoplankton density was shifted as the similar patterns to that of Chl-$\alpha$ (r=0.705, P<0.0001), however, there showed the drastic differences following a species. Based on the concentration of Chl-$\alpha$, filtration rate of U. douglasiae averaged 0.266 $L\;g^{-1}\;h^{-1}$ (0.115 to 0.442) on HAN and $0.577\;L\;g^{-1}\;h^{-1}$ (0.146 to 1.428) on IL water, respectively. There were no differences in feces production among the mussel density in the HAH water (ANOVA, P>0.5), while in IL water, including lots of seston, the HIGH mussel produced the higher fecal materials, over one hundred times of LOW. These results suggest that freshwater bivalve Unio douglasiae have the alternative potential, as a filter-feeder of seston in turbid lake, and a biological controller of diatom bloom in cold stream.

Effect of Silver Ion Solution on the Inhibition of Microcystis Growth (은이온 수용액의 Microcystis 생장 억제 효과)

  • Choi, Gang-Guk;Lee, Sang-Hun;Bae, Kie-Seo;Shin, Jae-Ki;Oh, Hee-Mock
    • Korean Journal of Environmental Biology
    • /
    • v.26 no.3
    • /
    • pp.183-191
    • /
    • 2008
  • The effect of silver ion solution on the growth of Microcystis aeruginosa UTEX 2388 (cyanobacterium) and Chlorella sp. KCTC AG20136 (green alga) was investigated using separated and mixed culture in filtered natural water and BG11 medium. In separated culture, M. aeruginosa UTEX 2388 and Chlorella sp. KCTC AG20136 were found to be sensitive to 0.01 and 0.1 mg L$^{-1}$ of silver ion, respectively. Also, the silver ion concentrations for the growth inhibition of M. aeruginosa UTEX 2388 and Chlorella sp. KCTC AG20136 in the mixed culture were same in separated culture. Cyanobacteria were more sensitive to the silver ion solution than green algae. In bloom sample, the minimal inhibition concentration of silver ion solution for the low Chl-${\alpha}$ sample (110$\sim$190 ${\mu}g$ L$^{-1}$) and high Chl-${\alpha}$ sample (1,500$\sim$1,900 ${\mu}g$ L$^{-1}$) was about 0.1 and 3.0 mg L$^{-1}$, respectively. The silver ion concentration for the inhibition of algal bloom sample was affected by the algal biomass. In order to use silver ion solution for the control of algal bloom, the silver ion concentration must be determined in consideration of a minimal effect on the environment.

The Effect of Environmental Factors on the Advent of Chattonella (Raphidophyceae) in Yeosu Coastal Waters, Korea, and the Effect of Nutrients on the Growth of Chattonella (여수 연안해역에서 침편모조류 Chattonella속 출현환경 및 영양염에 대한 성장특성)

  • Noh, Il-Hyeon;Oh, Seok-Jin;Shin, Hyeon-Ho;Kang, In-Seok;Yoon, Yang-Ho
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.43 no.4
    • /
    • pp.362-372
    • /
    • 2010
  • In order to understand what leads to the appearance of harmful Chattonella algae in the Yeosu coastal waters of Korea, we measured environmental parameters every week at one station from May to November, 2006, and April to October, 2007. Four species of Chattonella appeared during the monitoring period: C. antiqua, C. globosa, C. marina and C. ovata. The range of water temperature and salinity were $15.0-27.9^{\circ}C$ and 17.6~33.0 psu, respectively, when Chattonella appeared, and their maximum cell density (4,840 cells/L) was at $27.1^{\circ}C$ and 33.0 psu. During the monitoring periods, the range of dissolved inorganic nitrogen (DIN), phosphate (DIP) and chlorophyll $\alpha$ (Chl-$\alpha$) concentrations in surface waters were $1.20-52.23\;{\mu}M$ ($8.59{\pm}8.97\;{\mu}M$), $0.03-1.56\;{\mu}M$ ($0.47{\pm}0.31\;{\mu}M$) and $0.45-31.12\;{\mu}g/L$ ($3.58{\pm}4.77\;{\mu}g/L$), respectively. Chattonella occurred at low cell density when the Chl-$\alpha$ concentration increased because of supplied nutrients, whereas their cell density increased during the periods of rapid decrease in Chl-$\alpha$. The results of growth experiments based on batch culture showed that the half saturation constant ($K_s$) of C. antiqua on ammonium (${NH_4}^-$), nitrate (${NO_3}^-$) and phosphate (${PO_4}^{2-}$) were $3.89{\mu}M$, $5.01\;{\mu}M$ and $0.63\;{\mu}M$, respectively. These Ks values are higher than those reported for diatoms and other flagellates at the DIP concentration (average $0.47{\mu}M$) of Yeosu coastal waters. Although the maximum specific growth rate (${\mu}_{max}$) of C. antiqua was lower than diatoms, it was higher than those of other flagellates. Therefore, our results indicate that the DIP level in the study area was too low to support Chattonella blooms, although Chattonella species have physiological characteristics that enable them to grow more rapidly than other flagellates when nutrient levels are higher than their $K_s$.

Effects of Temperature, Food Concentration, and Shell Size on Filtering Rate and Pseudofeces Production of Unio douglasiae on Microcystis aeruginosa (수온, 먹이농도, 패각 크기가 Microcystis aeruginosa에 대한 말조개의 여과율 및 배설물 생산에 미치는 영향)

  • Lee, Yeon-Ju;Kim, Baik-Ho;Kim, Nan-Young;Um, Han-Yong;Hwang, Soon-Jin
    • Korean Journal of Ecology and Environment
    • /
    • v.41 no.spc
    • /
    • pp.61-67
    • /
    • 2008
  • This study was conducted to evaluate filtering rate (FR) and pseudofeces production (PFP) of a freshwater filter-feeding bivalve, Unio douglasiae, on a toxic cyanobacterium (Microcystis aeruginosa). The experiments were conducted under the various conditions of water temperature $(5{\sim}35^{\circ}C)$, mussel size $(5.6{\sim}13.3cm)$ and food con centrations $(49{\sim}491{\mu}g\;Chl-{\alpha}L^{-1})$. Among the applied temperature, the maximum FR $(0.41L\;gAFDW^{-1}hr^{-1})$ and PFP (0.47mg $gAFDW^{-1}hr^{-1}$) were observed at 15 and $25^{\circ}C$, respectively. Both weight-based FR and PFP were not correlated with the mussel size, and the values lied in a limited range with some degree of variation. Likewise, no significant relations between FR and PFP was observed in the mussel size. The FR values were negatively correlated with food concentration, while PFP showed positive correlation. Among the applied food concentrations, the maximum FR (0.34L $gAFDW^{-1}hr^{-1}$) and PFP (0.06mg $gAFDW^{-1}hr^{-1}$) appeared in $113{\mu}g\;Chl-{\alpha}L^{-1}$ and $491{\mu}g\;Chl-{\alpha}L^{-1}$, respectively. These results indicate that the grazing of Unio douglasiae are affected by various parameters, and it may be applied as an effective biofilter to inhibit Microcystis bloom under appropriate application. However, further studies on the fate of excreted pseudofeces are needed to understand their possibility of stimulating nuisant algal growth.

Suppressive Effect of Galangin on the Formation of 8-OH2'dG and DNA Single Strand Breaks by Hydrogen Peroxide ($H_2O_2$ 유도 8-OH2'dG 생성 및 DNA Single Strand Break에 미치는 Galangin의 억제효과)

  • Kim, Soo-Hee;Heo, Moon-Young
    • YAKHAK HOEJI
    • /
    • v.54 no.1
    • /
    • pp.32-38
    • /
    • 2010
  • The aim of this study was to evaluate the effect of galangin towards hydrogen peroxide-induced DNA damage. The calf thymus DNA and Chinese Hamster Lung (CHL) cells were used to measure 8-hydroxy-2'-deoxyguanosine(8-OH2'dG) as an indicator of DNA oxidative damage using high performance liquid chromatography with electrochemical detection. Hydrogen peroxide in the presence of Fe(II) ion induced the formation of 8-OH2'dG in both calf thymus DNA and CHL cells. The DNA damage effects were enhanced by increasing the concentration of Fe(II) ion and inhibited by galangin. In the single cell gel electrophoresis (Comet assay), galangin and dl-a-tocopherol showed an inhibitory effect in CHL on hydrogen peroxide induced DNA single strand breaks. Galangin showed more potent activity than dl-$\alpha$-tocopherol under our experimental conditions. These results indicate that galangin can modify the action mechanisms of the oxidative DNA damage and may act as chemopreventive agents against oxidative stress.

Spatial and Temporal Distribution of Picoplankton, Nanoplankton and Microplankton in Jungmun Coastal Waters of Jeju Island, Korea (제주 중문연안역의 초미세, 미소, 소형플랑크톤 시 ${\cdot}$ 공간적 분포)

  • Shynn, Bumm;Lee, Joon-Baek
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.7 no.2
    • /
    • pp.78-86
    • /
    • 2002
  • Abundance, carbon biomass and chlorophyll a concentration of each size-fractionated plankton on the basis of trophical level were investigated in terms of spacial and temporal distribution, and interactions between each biological parameter and environmental factors in Jungmun coastal waters of Jeju Island from July 1999 to June 2000. Heterotrophic picoplankton (HPP) abundance averaged 1.4${\times}$$10^{6}$ cells ${\cdot}$ $ml^{-1}$ at of offshore and 8.3${\times}$$10^{5}$ cells ${\cdot}$ $ml^{-1}$ at inshore, while autotrophic picoplankton (APP) abundance 9.9${\times}$$10^{4}$ cells ${\cdot}$ $ml^{-1}$ at of offshore and 7.1${\times}$$10^{4}$ cells ${\cdot}$ $ml^{-1}$ at inshore. They were more abundant at of offshore than at inshore, and also more abundant than the other areas of Korean waters. On the other hand, heterotrophic and autotrophic nanoplankton (HNP, ANP) were more abundant at inshore than at of offshore. Microplankton (AMP) abundance was affected by diatom (r=0.962, P${\le}$0.001) at inshore and by dinoflagellate (r=0.868, P${\le}$0.001) at of offshore. However correlations between each plankton group in terms of size and trophic level were not significant. Carbon biomass showed as same as the distribution pattern of abundance, but composition percentage of each biomass of plankton group were quite different from that of abundance, representing the highest percentage in ANP. Seasonal fluctuation of chlorophyll a were different according to size class, showing the highest with 0.42 ${\mu}g$CHl-${\alpha}$${\cdot}$$1^{-1}$(57.9%) of APP in March 2000, 1.42 ${\mu}g$CHl-${\alpha}$${\cdot}$$1^{-1}$(74.7%) of ANP in May 2000, and 1.51 ${\mu}g$CHl-${\alpha}$${\cdot}$$1^{-1}$(81.8%) of AMP in July 1999. Correlation between biological parameters and environmental factors by principle component analysis revealed that the first factor as main explanation is the increasing of phosphorus and silica and the increasing of the at both of offshore and inshore. The N:P ratio were 36.4 at inshore and 32.6 at of offshore, showing the lack of phosphorus. Thus we suggest that phosphorus might be a main limiting factor to affect phytoplankton community in the study area.

Changes of the Nutrients and Water Trophic States in Upo Wetland (우포늪의 영양염과 수질 영양 상태 변화)

  • Lee, Jung-Joon;Lee, Jung-Ho
    • Korean Journal of Ecology and Environment
    • /
    • v.43 no.3
    • /
    • pp.418-427
    • /
    • 2010
  • In the four swamps of Jjokjibeol, Mokpo, Upo and Sajipo in the Upo wetland, the nitrogen nutrients, phosphorus nutrients and chl-$\alpha$ had been observed during the period from April 2005 to December 2009 on monthly basis. Based on the results, the fluctuations of trophic state in the Upo wetland were estimated. Measurements of the nitrogen nutrients such as $NO_3$-N, $NH_3$-N and T-N showed to be generally decreased in comparison with those in the precent studies. Yet the T-N was still considerably higher than the general concentration level of eutrophication and algal blooming. $PO_4$-P and T-P showed to have reduced considerably in comparison to precedent studies. However, T-P also turned out to be dissolved over the nutrient standard. Nitrogen nutrients and phosphorus nutrients were the lowest in Jjokjibeol in the Upo wetland. The chl-$\alpha$ concentrations were the highest at summer periods in Jjokjibeol and Mokpo. However, the highest at non-summer periods in Upo and Sajipo. Among the four swamps, Upo had the highest density on average of chl-$\alpha$, and Mokpo the lowest. Through TRIX (Trophic Index) analysis evaluating trophic state of the Upo wetland, all four swamps were estimated of poor water quality (eutrophication).

Picophytoplankton Distribution in the Chuuk Lagoon South Pacific (남태평양 축 라군의 초미소 식물플랑크톤 분포 특성)

  • Noh Jae-Hoon;Lee Mi-Jin
    • Korean Journal of Environmental Biology
    • /
    • v.24 no.1 s.61
    • /
    • pp.81-88
    • /
    • 2006
  • The cell abundance and marker pigment distribution patterns of picophytoplankton in the Chuuk Lagoon, tropical South Pacific, were analyzed flow cytometry and HPLC. Also, respective contribution of Synechococcus, Prochlorococcus and picoeukaryotes on estimated carbon biomass was evaluated. Synechococcus and Prochlorococcus showed contrasting distributional patterns in the waters of Chuuk Lagoon. Relatively high concentration of Synechococcus was observed near Weno Island but the concentration decreased toward the Northeast Passage. However, Prochlorococcus showed an opposite distributional pattern. Picoeukaryotes did not show any significant variable difference. The range of divinyl chlorophyll a (Chl. $\alpha$) concentration, marker pigment of Prochlorococcus, was $1.2\sim180.3\;ng\;L^{-1}$ and higher concentrations were observed at the stations near the Northeast Passage than stations near Weno Island. This pigment pattern was similar to cell abundance pattern indicating that chi. a2 may be a useful biomass indicator. On the other hand, the range of zeaxanthin concentrations was $61.4\sim135.8\;ng\;L^{-1}$ showing comparatively less significant variation indicating zeaxanthin influence derived from Prochlorococcus. Estimated carbon biomass of Synechococcus contributed 68% of total picophytoplankton biomass. Prochlorococcus and picoeukaryotes respectively contributed 17.1% and 14.9% of total picophytoplankton biomass.

Dependence of Sub-Cellular Activities of the Blooming and Harmful Dinoflagellate Cochlodinium Polykrikoides on Temperature (수온에 따른 유해성 Cochlodinium polykrikoides 적조생물의 세포생리 변화)

  • Cho, Eun-Seob
    • Journal of Life Science
    • /
    • v.18 no.9
    • /
    • pp.1194-1201
    • /
    • 2008
  • Water temperature-dependent fluctuations of biochemical and molecular activities in the harmful dinoflagellate, Cochlodinium polykrikoides were studied. In terms of genomic DNA concentration, a similar value of 0.6 was observed at $12^{\circ}C$ and $15^{\circ}C$. However, DNA significantly increased beyond $18^{\circ}C$ (p<0.05), to a maximum of 1.8 at $24^{\circ}C$. DNA concentration significantly decreased to 0.6. The concentrations of RNA and total protein were likely at their highest values of 1.7 and 0.07 ${\mu}g$ $ml^{-1}$ at $24^{\circ}C$, respectively. RNA and total protein concentrations began to increase at $15^{\circ}C$. Oxygen availability between lower and higher temperatures was significantly different and increased from $18^{\circ}C$ according to light intensity, regardless of wavelengths (p<0.05). At $24^{\circ}C$, the highest value of the maximum electron transport rate ($ETR_{max}$), ranging from 537.9 (Ch 1) to 602.5 ${\mu}mol$ electrons $g^{-1}$ Chl ${\alpha}s^{-1}$ (Ch 4), was also apparent. Nitrate reductase (NR) and ATPase activities were at their highest values of 0.11 ${\mu}mol$ $NO_{2}^{-}$ ${\mu}g^{-1}$ Chl ${\alpha}h^{-1}$ and 0.78 pmol 100 $mg^{-1}$ at $24^{\circ}C$, respectively. In an analysis of CHN, the concentration of C and N also significantly increased (p<0.05). Most of the measurements for the cellular activities at $27^{\circ}C$, however, were less than at $24^{\circ}C$. These results suggest that the sub-cellular activities of C. polykrikoides are sensitive to changes in water temperature. It may be desirable to estimate at $18^{\circ}C$ the initiation of the massive blooming development of C. polykrikoides. In nature, it will be very difficult to maintain the massive blooms beyond $24^{\circ}C$ because of a possibly significant decrease in molecular activity of C. polykrikoides.

Hydrogen photoproduction by the synchronously grown marine unicellular cyanobacterium Synechococcus sp. Miami BG 043511 under extremely high oxygen concentration

  • Yih, Won-Ho;Takeyama, Haruko;Mitsui, Akira
    • Journal of the korean society of oceanography
    • /
    • v.31 no.1
    • /
    • pp.18-22
    • /
    • 1996
  • The effect of exogenous oxygen on hydrogen photoproduction was examined in the synchronously grown cells of marine Synechococcus sp. Miami BG 043511 under conditions of high cell density (0.6-0.8 mg chl-${\alpha}$ $ml^{-1}$) and high light intensity (1000 ${\mu}$E $m^{-2}$ $s^{-1}$). Hydrogen evolution after 20-h incubation did not decline under the initial oxygen concentrations up to 20%, but declined by half under 34% oxygen. 50% and 100% oxygen gas phase did not completely inhibit the hydrogen photoproduction during 40-h incubations. After 2-day pretreatment under 100% exogenous oxygen the hydrogen photoproduction capabilities were not irreversibly inhibited, which was demonstrated in the subsequent 9-day incubation under initial 0, 50 and even under 100% oxygen gas phase. This strain could be useful for developing a hydrogen photoproduction system under atmospheric oxygen concentration.

  • PDF