DOI QR코드

DOI QR Code

Dependence of Sub-Cellular Activities of the Blooming and Harmful Dinoflagellate Cochlodinium Polykrikoides on Temperature

수온에 따른 유해성 Cochlodinium polykrikoides 적조생물의 세포생리 변화

  • Cho, Eun-Seob (South Sea Fisheries Research Institute, National Fisheries Research and Development Institute)
  • 조은섭 (국립수산과학원 남해수산연구소)
  • Published : 2008.09.30

Abstract

Water temperature-dependent fluctuations of biochemical and molecular activities in the harmful dinoflagellate, Cochlodinium polykrikoides were studied. In terms of genomic DNA concentration, a similar value of 0.6 was observed at $12^{\circ}C$ and $15^{\circ}C$. However, DNA significantly increased beyond $18^{\circ}C$ (p<0.05), to a maximum of 1.8 at $24^{\circ}C$. DNA concentration significantly decreased to 0.6. The concentrations of RNA and total protein were likely at their highest values of 1.7 and 0.07 ${\mu}g$ $ml^{-1}$ at $24^{\circ}C$, respectively. RNA and total protein concentrations began to increase at $15^{\circ}C$. Oxygen availability between lower and higher temperatures was significantly different and increased from $18^{\circ}C$ according to light intensity, regardless of wavelengths (p<0.05). At $24^{\circ}C$, the highest value of the maximum electron transport rate ($ETR_{max}$), ranging from 537.9 (Ch 1) to 602.5 ${\mu}mol$ electrons $g^{-1}$ Chl ${\alpha}s^{-1}$ (Ch 4), was also apparent. Nitrate reductase (NR) and ATPase activities were at their highest values of 0.11 ${\mu}mol$ $NO_{2}^{-}$ ${\mu}g^{-1}$ Chl ${\alpha}h^{-1}$ and 0.78 pmol 100 $mg^{-1}$ at $24^{\circ}C$, respectively. In an analysis of CHN, the concentration of C and N also significantly increased (p<0.05). Most of the measurements for the cellular activities at $27^{\circ}C$, however, were less than at $24^{\circ}C$. These results suggest that the sub-cellular activities of C. polykrikoides are sensitive to changes in water temperature. It may be desirable to estimate at $18^{\circ}C$ the initiation of the massive blooming development of C. polykrikoides. In nature, it will be very difficult to maintain the massive blooms beyond $24^{\circ}C$ because of a possibly significant decrease in molecular activity of C. polykrikoides.

본 연구는 유해성 Cochlodinium polykrikoides 적조생물을 대상으로 수온변화에 따른 세포 생화학적 및 생리 활성도를 측정했다. Genomic DNA 함량은 $12^{\circ}C$$15^{\circ}C$에서 거의 비슷한 0.6을 보였으나, $18^{\circ}C$부터 급격히 높아져서 $24^{\circ}C$ 최고 1.8를 나타내었다. RNA와 total protein도 $24^{\circ}C$에 가장 높은 1.7과 0.07 ${\mu}g$ $ml^{-1}$으로 나타났다. 광합성량도 수온에 따른 큰 변화를 보였다. 빛의 파장에 관계없이 $18^{\circ}C$ 이상에서 현저히 높은 값을 보였다. $24^{\circ}C$ $ETR_{max}$ Ch1-Ch4까지의 범위는 537.9에서 602.5 ${\mu}mol$ electrons $g^{-1}$ Chl ${\alpha}s^{-1}$ 나타났다. Nitrate reductase와 ATPase 효소 활성도는 $24^{\circ}C$에서 각각 0.11 ${\mu}mol$ $NO_{2}^{-}$ ${\mu}g^{-1}$ Chl ${\alpha}h^{-1}$ , 0.78 pmol 100 $mg^{-1}$ 나타났다. CHN 분석에서도 수온에 따라 C, H, N의 함량이 현저하게 상이했다. $27^{\circ}C$ 배양시 $24^{\circ}C$에 비하여 대부분의 세포생리물질이 낮게 보였다. 따라서 C. polykrikoides는 수온 변화에 대하여 세포대사물질의 함량이 많은 차이를 볼 수 있어서 초기 적조 발생 조건은 $18^{\circ}C$로 추측된다. 본 실험의 결과로 $24^{\circ}C$ 이상이 되면 C. polykrikoides 대번식은 세포 내 생리물질의 현저한 저하로 형성되기가 어려울 것으로 보인다.

Keywords

References

  1. Anderson, D. M. 1997. Bloom dynamics of toxic Alexandrium species in the northeastern U.S. Limno. Oceanog. 42, 1009-1022. https://doi.org/10.4319/lo.1997.42.5_part_2.1009
  2. Brinkhus, B. H., L. Renzhi, W. Chaoyuan and J. Xun-sen. 1989. Nitrite uptake transients and consequences for in vivo algal nitrate reductase assays. J. Phycol. 25, 539-545. https://doi.org/10.1111/j.1529-8817.1989.tb00260.x
  3. Bronk, D. A. and P. M. Glibert. 1993. Contrasting patterns of dissolved organic nitrogen release by two size fractions of estuarine plankton during a period of rapid $NH_{4}^{+}$ consumption and $NO_{2}^{-}$ production. Mar. Ecol. Prog. Ser. 96, 291-299. https://doi.org/10.3354/meps096291
  4. Chang, F. H., W. F. Vincent and P. H Woods. 1995. Nitrogen uptake by the summer size-fractionated phytoplankton assemblages in the Westland, New Zealand, upwelling system. NZ. J. Mar. Fresh. Res. 29, 147-161. https://doi.org/10.1080/00288330.1995.9516650
  5. Cho, E. S., H. G. Kim and Y. C. Cho. 2000. Sequence analysis of Cochlodinium polykrikoides isolated from Korean coastal waters using sequences of internal transcribed spacers and 5.8S rDNA. J. Kor. Soc. Oceanogr. 35, 158-160.
  6. Choi, H Y. 2001. Oceanographic condition of the coastal area between Narodo Island and Sorido Island in the southern sea of Korea and its relation to the disappearance of red tide observed in summer 1998. The Sea 6, 49-62.
  7. Collos, Y. and G. Slawyk 1977. Nitrate reductase activity as a function of in situ nitrate uptake and environmental factors of euphotic zone profiles. J. Exp. Mar. Biol. Ecol. 29, 119-130. https://doi.org/10.1016/0022-0981(77)90043-0
  8. CoIlos, Y., M. Y. Siddiqi, A. D. Wang, M. Glass. and P. J. Harrison. 1992. Nitrate uptake kinetics by two marine diatoms using the radioactive tracer. N. J. Exp. Mar. Bio. Ecol. 163, 251-260. https://doi.org/10.1016/0022-0981(92)90053-D
  9. Dortch, Q., S. I. Ashmed and T. T. Packard. 1979. Nitrate reductase and glutamate dehydrogenase activities in Skeletonema costatum as measures of nitrogen assimilation rates. J. Plankton Res. 1, 169-186. https://doi.org/10.1093/plankt/1.2.169
  10. Eppley, R. W., J. L. Coastworth and L. Solorzano. 1969. Studies of nitrate reductase in marine phytoplankton. Limnol. Oceanogr. 14, 194-205. https://doi.org/10.4319/lo.1969.14.2.0194
  11. Fan, C., P. M. Glibert and J. M. Burkholder. 2003a. Characterization of the affinity for nitrogen, uptake kinetics, and environmental relationships for Prorocentrum minimum in natural blooms and laboratory cultures. Harmful Algae 2, 283-299. https://doi.org/10.1016/S1568-9883(03)00047-7
  12. Fan, C., P. M. Glibert, J. Alexander. and M. W. Lomas. 2003b. Characterization of urease activity in three marine phytoplankton species, Aureococcus anophagefferens, Prorocentrum minimum, and Thalassiosira weissflogii. Mar. Biol. 142, 949-958.
  13. Guillard, R. R. L. and J. H. Ryther. 1962. Studies of marine planktonic diatoms 1. Cyclotella nana Hustedt, and Detonula confervacea (Cleve) Gran. Can. J. Microbiol. 8, 229-239. https://doi.org/10.1139/m62-029
  14. Holm-Hansen, O., W. H. Sutchliffe and J. Sharp. 1968. Measurement of deoxyribonucleic acid in the ocean and its ecological significance. Limnol. Oceanogr. 13, 507-514. https://doi.org/10.4319/lo.1968.13.3.0507
  15. Iwamura, T., K. Kanazawa, Y. Shibata, S. Morimura, S. Ichimura, O. Maeda and H. Tamiya. 1967. Preliminary studies on the feasibility of microsanlytic measurement of planktonic populations. J. Oceanog. Soc. Jpn. 23, 247-251.
  16. Jeong, H. J., J. K. Park, J. S. Kim, S. T. Kim, J. E. Yoon, S. K. Kim and Y. M. Park. 2000. The outbreak of red tides in the coastal waters off Kohung, Chonnam, Korea: 3. The temporal and spatial variations in the heterotrophic dinoflageIlates and ciliates in 1997. The Sea 15, 37-46.
  17. Joseph, L., T. A. Villareal and F. Lipschultz. 1997. A high sensitivity nitrate assay and its application to verticaIly migrating Rhizosolenia mats. Aquat. Micro. Ecol. 12, 95-104. https://doi.org/10.3354/ame012095
  18. Jung, C. S., W. J. Choi, H. G. Kim, Y. G. Jung, J. B. Kim and W. A. Lim. 1999. Interrelation between Cochlodinium polykrikoides blooms and community structure of zooplankton in the coastal waters around Namhaedo in the South Sea of Korea, 1998. Bull. Nat'l. Fish. Res. Dev. Inst. 57, 153-161.
  19. Kang, Y. S., H. G. Kim, W. A. Lim, C. K. Lee, S. G. Lee. and S. Y. Kim. 2002. An unusual coastal environment and Cochlodinium polykrikoides blooms in 1995 in the South Sea of Korea. J. Kor. Soc. Oceanogr. 37, 212-223.
  20. Kim, C. H, H. J. Cho, J. B. Shin, C. H. Moon. and K. Matsuoka. 2002. Regeneration from hyaline cysts of Cochlodinium polykrikoides (Gymnodiniales, Dinophyceae), a red tide organism along the Korean coast. Phycologia 41, 667-669. https://doi.org/10.2216/i0031-8884-41-6-667.1
  21. Kim, D. I. 2003. Physiological and ecological studies on harmful red tide dinoflagellate Cochlodinium polykrikoides (Margalef). Ph. D. thesis. Kyushu University, Japan. (in Japanese)
  22. Kim, D. I., Y. Matsuyama, S. Nagasoe, M. Yamguchi, Y. H. Yoon, Y. Oshima, Y. Imada and T. Honjo. 2004. Effects of temperature, salinity and irradiance on the growth of the harmful red tide dinoflagellate Cochlodinium polykrikoides Margalef (Dinophyceae). J. Plankton Res. 26, 61-66. https://doi.org/10.1093/plankt/fbh001
  23. Kim, H. C., D. M. Kim, D. I. Lee, C. K. Park and H. G. Kim. 2001a. Limiting nutrients of Cochlodinium: polykrikoides red tide in Saryang Island coast by algal growth potential (AGP) assay. J. Korean Fish. Soc. 34, 347-464.
  24. Kim, H. C., C. K. Lee, S. G. Lee, H. G. Kim and C. K. Park. 2001b. Physio-chemical factors on the growth of Cochlodinium polykrikoides and nutrient utilization. J. Korean Fish. Soc. 34, 445-456.
  25. Kim, H. G., S. G. Lee and K. H. An. 1997. Recent red tides in Korean coastal waters, Kudeok Publishing, Pusan, pp. 280 (in Korean)
  26. Kim, H. G., W. J. Choi, Y. G. Jung, C. S. Jung, J. S. Park, K. H. An and C. I. Baek. 1999. Initiation of Cochlodinium polykrikoides blooms and its environmental characteristics around the Narodo Island in the western part of South Sea of Korea. Bull. Nat'l. Fish Res. Dev. Inst. 57, 119-129.
  27. Lee, C. K., H. C. Kim, S. G. Lee, C. S. Jung, H. G. Kim and W. A. Lim. 2001. Abundance of harmful algae, Cochlodinium polykrikoides, Gyrodinium impudicum and Gymnodinium catenatum in the coastal area of South Sea of Korea and their effects of temperature, salinity, irradiance and nutrient on the growth in culture. J. Korean Fish Soc. 34, 536-544.
  28. Lee, J. S., J. S. Hwang, S. M. Lee, S. H. Sung, Y. S. Kim and D. S. Shu. 1999. Development of RFLP markers from silkworm (Bombyx mori). Korean J. Genetics 21, 319-327.
  29. Lin, S., J. Chang and E. J. Carpenter. 1995. Growth characteristics of phytoplankton determined by cell cycle proteins: PCNA immunostaining of Dunaliella tertiolecta (Chlorophyceae). J. Phycol. 31, 388-395. https://doi.org/10.1111/j.0022-3646.1995.00388.x
  30. Lomas, M. W. and P. M. Glibert. 1999. Interactions between $NH_{4}^{+}$ and $NO_{3}$ uptake and assimilation: comparison of diatoms and dinoflagellates at several growth temperatures. Mar. Biol. 133, 541-551. https://doi.org/10.1007/s002270050494
  31. Mahoney, J. B., B. Hollomon and R. Waldhauer. 1988. Is the lower Hudson-Raritan estuary a suitable habitat for Gonyaulax tamarensis? Mar. Ecol. Prog. Ser. 17, 237-243.
  32. Partensky, F., D. Vaulot and C. Videau. 1991. Growth and cell cycle of two closely related red tide forming dinoflagellates: Gymnodinium nagasakiense and G. cf. nagasakiense. J. Phycol. 27, 733-742. https://doi.org/10.1111/j.0022-3646.1991.00733.x
  33. Takahashi, M., H. Nagai, Y. Yamaguchi and S. Ichimura. 1974. The distribution of chlorophyll a, protein, RNA and DNA in the North Pacific Ocean. J. Oceanogr. Soc. Jpn. 30, 137-150. https://doi.org/10.1007/BF02111111
  34. Tester, P. A. and K. A. Steidinger. 1997. Gymnodinium breve red tide bloms: Initiation, transport, and consequences of surface circulation, Limnol. Oceanogr. 42, 1039-1051. https://doi.org/10.4319/lo.1997.42.5_part_2.1039
  35. Vargo, G. A, K. I. Carder, W. Gregg, E. Shanley and C. HeiI. 1987. The potential contribution of primary production by red tides to the west Florida shelf ecosystem. Limnol. Oceanogr. 32, 762-767. https://doi.org/10.4319/lo.1987.32.3.0762
  36. Vargo, G. A and D. Howard-Shamblott, 1990. "Phosphorus dynamics in Ptychodiscus brevis: Cell phosphorus, uptake and growth requirements". In Graneil, E. L. (ed.), Toxic Marine Phythoplankton, Elsevier, pp. 324-329.
  37. Yang, J. S., H. Y. Choi, H. J. Jeong, J. Y. Jeong and J. K. Park. 2000. The outbreak of red tides in the coastal waters off Kohung, Chonnarn, Korea: 1. Physcial and chemical characteristics in 1997. The Sea 5, 16-26.