Picophytoplankton Distribution in the Chuuk Lagoon South Pacific

남태평양 축 라군의 초미소 식물플랑크톤 분포 특성

  • Published : 2006.03.01

Abstract

The cell abundance and marker pigment distribution patterns of picophytoplankton in the Chuuk Lagoon, tropical South Pacific, were analyzed flow cytometry and HPLC. Also, respective contribution of Synechococcus, Prochlorococcus and picoeukaryotes on estimated carbon biomass was evaluated. Synechococcus and Prochlorococcus showed contrasting distributional patterns in the waters of Chuuk Lagoon. Relatively high concentration of Synechococcus was observed near Weno Island but the concentration decreased toward the Northeast Passage. However, Prochlorococcus showed an opposite distributional pattern. Picoeukaryotes did not show any significant variable difference. The range of divinyl chlorophyll a (Chl. $\alpha$) concentration, marker pigment of Prochlorococcus, was $1.2\sim180.3\;ng\;L^{-1}$ and higher concentrations were observed at the stations near the Northeast Passage than stations near Weno Island. This pigment pattern was similar to cell abundance pattern indicating that chi. a2 may be a useful biomass indicator. On the other hand, the range of zeaxanthin concentrations was $61.4\sim135.8\;ng\;L^{-1}$ showing comparatively less significant variation indicating zeaxanthin influence derived from Prochlorococcus. Estimated carbon biomass of Synechococcus contributed 68% of total picophytoplankton biomass. Prochlorococcus and picoeukaryotes respectively contributed 17.1% and 14.9% of total picophytoplankton biomass.

열대 남태평양에 위치한 축 라군에서 flow cytometry와 HPLC를 이용 초미소 식물플랑크톤 조사를 하였다. Synechococcus, Prochlorococcus 그리고 picoeukaryotes의 풍도와 지시색소 분포 양상을 분석하였고 추정된 탄소 생체량에서의 기여율을 조사하였다. 남세균인 Synechococcus와 Prochlorococcus는 축 라군에서 대비되는 분포 특성을 보였다. Synechococcus는 웨노섬 주변 정점에서 높은 풍도를 보인 반면, 북동수로 쪽으로 멀어지며 풍도가 감소하였다. Prochlorococcus는 이와 반대의 분포특성을 나타냈으며, picoeukaryotes는 특정적인 수역별 변화를 보이지 않았다. Prochlorococcus의 지시색소인 divinyl chlorophyll a (Chl. $\alpha2$)는 $1.2\sim180.3\;ng\;L^{-1}$의 농도 범위를 보였으며, 웨노섬 주변 정점들보다 북동수로에 접한 정점들에서 높게 나타났다. 이는 Prochlorococcus의 풍도와 유사한 분포로서, chl. a2가 생체량의 좋은 지표임을 나타냈다. 반면 zeaxanthin은 $61.4\sim135.8\;ng\;L^{-1}$의 농도 범위로 정점별 변화가 풍도변화에 비해 작은 특징을 보였는데 이는 Prochlorococcus로부터 유래된 zeaxanthin의 영향으로 판단된다. Synechococcus의 추정된 탄소 생체량은 전체 초미소 식물플랑크톤 생체량의 68%를 차지하였다. Prochlorococcus와 picoeukaryotes는 각각 17.1%와 14.9%의 생체량을 나타냈다.

Keywords

References

  1. Agawin NSRA, CM Duarte and S Agusti. 2000. Nutrient and temperature control of the contribution of picoplankton to phytoplankton biomass and production. Limnol. Oceanogr. 45:591-600 https://doi.org/10.4319/lo.2000.45.3.0591
  2. Blanchot J, JM Andre, C Navarette, J Neveux and MH Radenac. 2001. Picophytoplankton in the equatorial Pacific: vertical distributions in the warm pool and in the high nutrient low chlorophyll condition. Deep-Sea Res. I. 48: 297-314 https://doi.org/10.1016/S0967-0637(00)00063-7
  3. Charpy Land J Blanchot. 1998. Photosynthetic picoplankton in French Polynesian atoll lagoons: estimation of taxa contribution to biomass and production by flow cytometry. Mar. Eco. Prog. Ser. 162:57-70 https://doi.org/10.3354/meps162057
  4. Charpy Land J B1anchot. 1999. Picophytoplankton biomass, community structure and productivity in the Great Astrolabe Lagoon, Fiji. Coral Reefs 18:255-262 https://doi.org/10.1007/s003380050190
  5. Chisholm SW, RJ Olson, ER Zetter, R Goerike, JB Waterburry and NA Welschmeyer. 1988. A novel free-living prochlorophyte abundant in the oceanic euphotic zone. Nature 334:340-343 https://doi.org/10.1038/334340a0
  6. Goericke Rand DJ Repeta. 1993. Chlorophylls a and band divinyl chlorophylls a and b in the open subtropical north Atlantic Ocean. Mar. Ecol. Prog. Ser. 101:307-313 https://doi.org/10.3354/meps101307
  7. Higgins HW and DJ Mackey. 2000. Algal class abundances, estimated from chlorophyll and carotenoid pigments, in the western Equatorial Pacific under EI Nino and non-El Nino conditions. Deep-Sea Res. I. 47:1461-1483 https://doi.org/10.1016/S0967-0637(99)00114-4
  8. Jeffrey SW and M Vesk. 1997. Introduction to marine phytoplankton and their pigment signatures. In: Phytoplankton Pigments in Oceanography: Guidelines to Modern Methods. ed. by Jeffrey, S.W., R.F.C. Mantoura, and S.W. Wright. UNESCO, Paris. pp. 37-84
  9. Jiao N, Y Yang, H Koshikawa and M Watanabe. 2002. Influence of hydrographic conditions on picoplankton distribution in the East China Sea. Aq. Microb. Ecol. 30:37-48 https://doi.org/10.3354/ame030037
  10. Jiao N, Y Yang, N Hong, Y Ma, S Harada, H Koshikawa and M Watanabe. 2005. Dynamics of autotrophic picoplankton and heterotrophic bacteria in the East China Sea. Cont. Shelf Res. 25: 1265-1279 https://doi.org/10.1016/j.csr.2005.01.002
  11. Johnson PW and J McN Sieburth. 1979. Chroococcoid cyanobacteria in the sea: A ubiquitous and diverse phototrophic biomass. Limnol. Oceanogr. 24:928-935 https://doi.org/10.4319/lo.1979.24.5.0928
  12. Kana TM, PM Glibert, R Goericke and NA Welschmeyer. 1988. Zeaxanthin and $\beta -carotene $ in Synechococcus WH7803 respond differently to irradiance. Limnol Oceanogr. 33: 1623-1627 https://doi.org/10.4319/lo.1988.33.6_part_2.1623
  13. Li WKW and AM Wood. 1988. Verticai distribution of North Atlantic ultraphytoplankton: analysis by flow cytometry and epifluorescence microscopy. Deep-Sea Res. I. 35: 1615-1638 https://doi.org/10.1016/0198-0149(88)90106-9
  14. Marie D, N Simon, L Guillou, F Partensky and D Vaulot. 2000. Flow cytometry analysis of marine picoplankton. In: Living Colors: Protocols in Flow Cytometry and Cell sorting. ed. by Diamond, R.A. and S. DeMaggio. Springer Verlag. pp. 421-454
  15. Moore LR, R Goericke and SW Chisholm. 1995. Comparative physiology of Synechococcus and Prochlorococcus: influence of light and temperature on growth, pigments, fluorescence and absorptive properties. Mar. Eco. Prog. Ser. 116:259-275 https://doi.org/10.3354/meps116259
  16. Noh JH, SJ Yoo and SH Kang. 2006. The summer distribution of pico-phytoplankton in the western Pacific. Korean J. Environ. Biol. 24:67-80
  17. Pan LA, LH Zhang, J Zhang, MG Josep and M Chao. 2005. On-board flow cytometric observation of picoplankton community structure in the East China Sea during the fall of different years. FEMS. Microb. Ecol. 52:243-253 https://doi.org/10.1016/j.femsec.2004.11.019
  18. Parsons TR, Y Maita and CM Lalli. 1984. A manual of chemical and biological methods for seawater analysis. Pergamon Press. New York. pp. 173
  19. Partensky F, J Blanchot and D Vaulot. 1999a. Differential distribution of Prochlorococcus and Synechococcus in oceanic waters: a review. In: Marine cyanobacteria. ed. by Charpy, L, and A.W.D. Larkum. Bull. L'Institut. Oceanogr. Monaco. 19:457-475
  20. Partensky F, WR Hess and D Vaulot. 1999b. Prochlorococcus, a marine photosynthetic prokaryote of global significance. Microbiol. Mol. Bio. Rev. 63:106-127
  21. Six C, JC Thomas, B Btahamsha, Y Lemoine and F Partensky. 2004. Photophysiology of the marine cyanobacterium Synechococcus sp. WH8102, a new model organism. Aq. Microb. Biol. 35: 17-29
  22. Veldhuis MJW and GW Kraay. 2004. Phytoplankton in the subtropical Atlantic Ocean: towards a better assesment biomass and composition. Deep-Sea Res. I. 51 :507-530 https://doi.org/10.1016/j.dsr.2003.12.002
  23. Waterbury JB, SW Watson, RRL Guillard and LE Bland. 1979. Widespread occuuence of a unicellular, marine, planktonic, cyanobacterium. Nature 277:293-294 https://doi.org/10.1038/277293a0
  24. Wright SW and RL van den Enden. 2000. Phytoplankton community structure and stocks in the East Antarctic marginal ice zone (BROKE survey. January-March 1996) determined by CHEMT AX analysis of HPLC pigments signatures. Deep-Sea Res. II. 47:2363-2400 https://doi.org/10.1016/S0967-0645(00)00029-1
  25. Zapata M, F Rodriguez and JL Garrido. 2000. Seperation of chlorophylls and carotenoids from marine phytoplankton: a new HPLC method using a reversed phase C8 column and pyridine containing mobile phases. Mar. Eco. Progr. Ser. 195:29-45 https://doi.org/10.3354/meps195029