Suppressive Effect of Galangin on the Formation of 8-OH2'dG and DNA Single Strand Breaks by Hydrogen Peroxide

$H_2O_2$ 유도 8-OH2'dG 생성 및 DNA Single Strand Break에 미치는 Galangin의 억제효과

  • Received : 2009.09.25
  • Accepted : 2009.12.18
  • Published : 2010.02.28

Abstract

The aim of this study was to evaluate the effect of galangin towards hydrogen peroxide-induced DNA damage. The calf thymus DNA and Chinese Hamster Lung (CHL) cells were used to measure 8-hydroxy-2'-deoxyguanosine(8-OH2'dG) as an indicator of DNA oxidative damage using high performance liquid chromatography with electrochemical detection. Hydrogen peroxide in the presence of Fe(II) ion induced the formation of 8-OH2'dG in both calf thymus DNA and CHL cells. The DNA damage effects were enhanced by increasing the concentration of Fe(II) ion and inhibited by galangin. In the single cell gel electrophoresis (Comet assay), galangin and dl-a-tocopherol showed an inhibitory effect in CHL on hydrogen peroxide induced DNA single strand breaks. Galangin showed more potent activity than dl-$\alpha$-tocopherol under our experimental conditions. These results indicate that galangin can modify the action mechanisms of the oxidative DNA damage and may act as chemopreventive agents against oxidative stress.

Keywords

References

  1. Ames, B. N. : Endogeneous DNA damage as related to cancer and aging, Mutation Res. 214, 41 (1989). https://doi.org/10.1016/0027-5107(89)90196-6
  2. Farooqui, T. and Farooqui, A. A. : Aging: an important factor for the pathogenesis of neurodegenerative diseases. Mech. Ageing Dev. 130, 203 (2009). https://doi.org/10.1016/j.mad.2008.11.006
  3. Chance, B., Siers, H. and Boveris, A. : Hydroperoxide metabolism in mammalian organs. Phys. Rev. 59, 527 (1979).
  4. Loft, S., Vistisen, K., Ewertz, M., Tjonneland, A., Overvad, K. and Poulsen, H. E. : Oxidative DNA damage estimated by 8-hydroxydeoxyguanosine excretion in humans: influence of smoking, gender and body mass index. Carcinogenesis 13(12), 2241 (1992). https://doi.org/10.1093/carcin/13.12.2241
  5. Douglas, R. M., Ian, N. A., Lindsay, M. and Robert, A. F. : A sensitive and selective method for the determination of tissue 8-hydroxy-2'-deoxyguanosine using HPLC with electrochemical array detection. ESA Inc. (1997).
  6. Park, J. W., Cundy, K. C. and Ames, B. N. : Detection of DNA adducts high-performance liquid chromatography with electrochemical detection. Carcinogenesis 10, 827 (1989). https://doi.org/10.1093/carcin/10.5.827
  7. Kaneko, T., Tahara, S. and Matsuo, M. : Non-linear accumulation of 8-hydroxy-2'-deoxyguanosine, a marker of oxidized DNA damage, during aging. Mutat. Res. 316, 277 (1996). https://doi.org/10.1016/S0921-8734(96)90010-7
  8. Shigenaga, M. K., Park, J. W., Cundy, K. C., Gimeno, C. J. and Ames, B. N. : In vivo oxidative DNA damage: Measurement of 8-hydroxy-2'-deoxyguanosine in DNA and urine by highperformance liquid chromatography with electrochemical detection. Methods Enzymol. 186, 521 (1990). https://doi.org/10.1016/0076-6879(90)86146-M
  9. Collins, A. R., Dusinska, M., Gedik, C. M. and Stetina, R. : Oxidative damage to DNA : do we have a reliable biomarker ?, Environ Health Perspect. 104 Suppl 3, 465 (1996). https://doi.org/10.1289/ehp.96104s3465
  10. Muniz, P., Valls, V., Perez-Brostta, C., Iradi, A., Climent, J. V., Oliva, M. R. and Saez, G. T. : The role of 8-hydroxy-2'-deoxyguanosine in rifamycin-induced DNA damage. Free Radical Biology & Medicine 18, 747 (1995). https://doi.org/10.1016/0891-5849(94)00200-4
  11. Toru, T. and Kanehisa, M. : Increased formation of 8-hydroxydeoxyguanosine, an oxidative DNA damage, in lymphoblasts from Fanconi's anemia patients due to possible catalase deficiency. Carcinogenesis 14, 1115 (1993). https://doi.org/10.1093/carcin/14.6.1115
  12. Paul, H. G., Douglas, R. Mc., Hasan, P., Simone, P. and Ian, N. A. : The measurement of markers of oxidative damage, antioxidant and related cmpounds using HPLC and coulometric array analysis. Progress in HPLC-HPCE 6, 99 (1997).
  13. Singh, N. P., McCoy, M. T., Tice, R. R. and Schneider, E. L. : A simple technique for quantitation of low levels of DNA damage in individual cells. Experimental Cell Research 175, 184 (1988). https://doi.org/10.1016/0014-4827(88)90265-0
  14. Olive, P. L., Banath, R. E. and Durand, R. E. : Heterogenecity in radiation-induced DNA damage and repair in tumor and normal cells measured using the comet assay. Radiat. Res. 122, 86 (1990). https://doi.org/10.2307/3577587
  15. Floyd, R. A. : Role of oxygin free radicals in carcinogenesis and brain ischemia. FASEB J. 4, 2578 (1990).
  16. Halliwell, B. and Aruoma, O. I. : DNA damage by oxygen-derived species; its mechanism and mesurement in mammalian systems. FEBS Letter 281, 9 (1991). https://doi.org/10.1016/0014-5793(91)80347-6
  17. Afanas'ev, I. B. and Polozovam N. I. : One electron osidation of p- and o-dihydroxy benzenes by oxygen radical anion in aprotic medium. Zh. Organ. Khim. 26, 1013 (1978).
  18. Slater, T. F. and Scott, R. : The free radical scavenging action of (+) cyanidanol-3 in relation to the toxicity of carbon tetrachloride. Int. Congr. Symp. Ser-R Soc. Med. 47, 33 (1981).
  19. The encyclopedia of Wakan-Yaku (Traditional Sino-Japanese Medicine), Hoikusa, Japan, pp. 136-137 (1993).
  20. Afolayan, A. J. and Meyer, J. J. : The antimicrobial activity of 3,5,7-tri-hydroxyflavone isolated from the shoots of Helichrysu aureonitens. J. Ethnopharmacol. 57, 177 (1997). https://doi.org/10.1016/S0378-8741(97)00065-2
  21. Meyer, J. J., Afolayan, A. J., Taylor, M. B. and Erasmus, D. : Antiviral activity of galangin isolated from the aerial parts of Helichrysum aureonitens. J. Ethnopharmacol. 56, 165 (1997). https://doi.org/10.1016/S0378-8741(97)01514-6
  22. Krol, W., Scheller, S., Czuba, Z., Matsuno, T., Zydowicz, G., Shan, J. and Kos, M. : Inhibition of neutrophils' chemiluminescence by ethanol extract of propolis (EEP) and its phenolic components. J. Ethnopharmacol. 55, 19 (1996). https://doi.org/10.1016/S0378-8741(96)01466-3
  23. Uda, Y., Price, K. R., Williamson, G. and Rhodes, M. J. : Induction of the anticarcinogenic marker enzyme, quinone reductase, in murine hepatoma cells in vitro by flavonoids. Cancer Lett. 120, 213 (1997). https://doi.org/10.1016/S0304-3835(97)00311-X
  24. So, F. V., Guthrie, N., Chambers, A. F. and Caroll, K. K. : Inhibition of proliferation of estrogen recepter-positive MCF-7 human breast cancer cells by flavonoids in the presence and absence of excess estrogen. Cancer. Lett. 112, 127 (1997). https://doi.org/10.1016/S0304-3835(96)04557-0
  25. Eaton, E. A., Walle, U. K., Lewis, A. J., Hudson, T., Wilson, A. A. and Walle, T. : Flavonoids, potent inhibitors or the human Pform phenolsulfotransferase. Potential role in drug metabolism and chemprevention. Drug Metab. Dispos. 24, 232 (1996).
  26. Phang, J. M., Poore, C. M., Lopaczynska, J. and Yeh, G. C. : Flavonol-stimulated efflux of 7,12-dimethylbenz(a)anthracene in multidrug resistant breast cancer cells. Cancer Res. 53, 5977 (1993).
  27. Myara, I., Pico, I., Vedie, B. and Moatti, N. : A method to screen for the antioxidant effect of compounds on low-density lipoprotein (LDL): illustration with flavonoids. J. Pharmacol Toxicol Methods 30, 69 (1993). https://doi.org/10.1016/1056-8719(93)90009-4
  28. Cholbi, M. R., Paya, M. and Alcaraz, M. J. : Inhibitory effects of phenolic compounds on $CCl_4$-induced microsomal lipid peroxidation. Experientia 47, 195 (1991). https://doi.org/10.1007/BF01945426
  29. Ames, B. N. : Dietary carcinogens and anticarcinogens. Oxygen radical and degenerative diseases. Science 221, 1256 (1983). https://doi.org/10.1126/science.6351251
  30. Flora, S., Bronzetii, G. and Sovels, F. H. : Assesment of antimutagenicity and anticarcinogenicity. Mutat. Res. 267, 153 (1992). https://doi.org/10.1016/0027-5107(92)90059-B
  31. Melidou, M., Riganakos, K. and Galaris, D. : Protection against nuclear DNA damage offered by flavonoids in cells exposed to hydrogen peroxide: The role of iron chelation. Free Radical Biology and Medicine 39, 1591 (2005). https://doi.org/10.1016/j.freeradbiomed.2005.08.009
  32. Collins, A. R. : The comet assay for DNA damage and repair: principles, applications, and limitations. Mol. Biotechnol. 26(3), 249 (2004). https://doi.org/10.1385/MB:26:3:249
  33. Wyatt, N., Kelly, C., Fontana, V., Merlo, D. F., Whitelaw, D. and Anderson, D. : The responses of lymphocytes from Asian and Caucasian diabetic patients and non-diabetics to hydrogen peroxide and sodium nitrite in the Comet assay. Mutation Research/Genetic Toxicology and Environmental Mutagenesis 609(2), 154 (2006). https://doi.org/10.1016/j.mrgentox.2006.06.029
  34. Petersen, A. B., Gniadecki, R., Vicanova, J., Thorn, T. and Wulf, H. C. : Hydrogen peroxide is responsible for UVA-induced DNA damage measured by alkaline comet assay in HaCaT keratinocytes. Journal of Photochemistry and Photobiology B: Biology 59, 123 (2000). https://doi.org/10.1016/S1011-1344(00)00149-4
  35. Barbouti, A., Doulias, B. T., Nousis, L., Tenopoulou, M. and Galaris, D. : DNA damage and apoptosis in hydrogen peroxideexposed Jurkat cells: bolus addition versus continuous generation of $H_2O_2$. Free Radical Biology and Medicine 33(5), 691 (2002). https://doi.org/10.1016/S0891-5849(02)00967-X
  36. Horvathova, E., Slameova, D., Marsalkova, L., Sramkova, M. and Wsolova, L. : Effects of borneol on the level of DNA damage induced in primary rat hepatocytes and testicular cells by hydrogen peroxide. Food and Chemical Toxicology 47(6), 1318 (2009). https://doi.org/10.1016/j.fct.2009.03.002
  37. Duthie, S. J., Collins, A. R., Duthie, G. G. and Dobson V. L. : Quercetin and myricetin protect against hydrogen peroxideinduced DNA damage (strand breaks and oxidised pyrimidines) in human lymphocytes. Mutation Research/Genetic Toxicology and Environmental Mutagenesis 393(3), 223 (1997). https://doi.org/10.1016/S1383-5718(97)00107-1
  38. Arranz, N., Haza, A. I., García, A., Delgado, E., Rafter, J. and Morales, P. : Effects of organosulfurs, isothiocyanates and vitamin C towards hydrogen peroxide-induced oxidative DNA damage (strand breaks and oxidized purines/pyrimidines) in human hepatoma cells. Chemico-Biological Interactions 169, 63 (2007). https://doi.org/10.1016/j.cbi.2007.05.006
  39. Lee, S. C., Shin, K. S. and Heo, M. Y. : Protection of ROS induced cytotoxicity and DNA damage by the extract of Alpinia officinarum. J. Food Hygiene and Safety 17, 106 (2002).
  40. 이승철, 허찬, 이승현, 김현표, 허문영 : 야채 및 과일추출물의 항산화작용과 산화적 염색체손상에 대한 억제효과. 약학회지 48(2), 111 (2004).
  41. MacGregor, J. T. : Genetic toxicology of dietary flavonoids. Prog. Clin. Biol. Res. 213, 33 (1986).
  42. Hatcher, J. F. and Bryan, J. T. : Factors affecting the mutagenic activity of quercetin for Salmonella typhimurium TA98: metal ions, antioxidants, and pH. Mutation Res. 148, 13 (1985). https://doi.org/10.1016/0027-5107(85)90203-9
  43. Stich, H. F., Karim, J., Koropatnick, J. and Lo, L. : Mutagenic action of ascorbic acid. Nature 260, 722 (1976). https://doi.org/10.1038/260722a0
  44. Gutteridge, J. C. M. and Xaio Chang, F. : Enhancement of bleomycin-iron free radical damage to DNA by antioxidants and their inhibition of lipid peroxidation. FEBS Letter 123, 71 (1981). https://doi.org/10.1016/0014-5793(81)80022-1
  45. Melidoua, M., Riganakosb, K. and Galarisa, D. : Protection against nuclear DNA damage offered by flavonoids in cells exposed to hydrogen peroxide: The role of iron chelation. Free Radic Biol Med. 39(12), 1591 (2005). https://doi.org/10.1016/j.freeradbiomed.2005.08.009