• 제목/요약/키워드: chemical mechanical polishing(CMP)

검색결과 429건 처리시간 0.023초

텅스텐 슬러리를 사용한 Cu-CMP 특성에서 산화제 첨가의 영향 (Effects of Oxidizer Additive on the Performance of Copper-Chemical Mechanical Polishing using Tungsten Slurry)

  • 이우선;최권우;이영식;최연옥;오용택;서용진
    • 한국전기전자재료학회논문지
    • /
    • 제17권2호
    • /
    • pp.156-161
    • /
    • 2004
  • We investigated the effects of oxidizer additive on the performance of Cu-CMP process using commonly used tungsten slurry. In order to compare the removal rate and non-uniformity as a function of oxidizer contents, we used alumina-based tungsten slurry and copper blanket wafers deposited by DC sputtering method. According to the CMP removal rates and particle size distribution, and the microstructures of surface layer by SEM image as a function or oxidizer contents were greatly influenced by the slurry chemical composition of oxidizers. The difference in removal rate and roughness of copper surface are believed to cause by modification in the mechanical behavior of $Al_2$O$_3$abrasive particles in CMP slurry.

산화제 첨가에 따른 W-CMP 특성 (W Chemical Mechanical Polishing (CMP) Characteristics by oxidizer addition)

  • 박창준;서용진;이경진;정소영;김철복;김상용;이우선
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2003년도 하계학술대회 논문집 Vol.4 No.1
    • /
    • pp.46-49
    • /
    • 2003
  • Chemical mechanical polishing (CMP) is an essential dielectric planarization in multilayer microelectronic device fabrication. In the CMP process it is necessary to minimize the extent of surface defect formation while maintaining good planarity and optimal material removal rates. The polishing mechanism of W-CMP process has been reported as the repeated process of passive layer formation by oxidizer and abrasion action by slurry abrasives. Thus, it is important to understand the effect of oxidizer on W passivation layer, in order to obtain higher removal rate (RR) and very low non-uniformity (NU%) during W-CMP process. In this paper, we compared the effects of oxidizer or W-CMP process with three different kind of oxidizers with 5% hydrogen peroxide such as $Fe(NO_3)_3$, $H_2O_2$, and $KIO_3$. The difference in removal rate and roughness of W in stable and unstable slurries are believed to caused by modification in the mechanical behavior of $Al_3O_3$ particles in presence of surfactant stabilizing the slurry.

  • PDF

산화망간이 첨가된 혼합 연마제 실리카 슬러리의 산화막 CMP 특성 (Chemical Mechanical Polishing Characteristics of Mixed Abrasive Silica Slurry (MAS) by adding of Manganese oxide (MnO2) Abrasive)

  • 서용진
    • 전기전자학회논문지
    • /
    • 제23권4호
    • /
    • pp.1175-1181
    • /
    • 2019
  • 논문에서는 1:10으로 희석된 실리카 슬러리에 산화망간(MnO2) 연마제를 첨가하여 재처리된 혼합연마제 슬러리(Mixed Abrasive Slurry; MAS)의 화학기계적연마(CMP) 특성을 연구하였다. 최적의 연마 성능을 갖는 슬러리를 설계하기 위해서는 높은 연마율, 하부층에 대한 적절한 연마선택비, 연마 후의 낮은 표면결함, 슬러리의 안정성 등을 얻어야 한다. 산화망간이 첨가된 MAS의 연마 성능은 연마율 및 비균일도와 같은 CMP 성능, 입도 분석, 표면 형상에 대해 평가하였다. 실험결과, 높은 연마율과 낮은 비균일도 측면에서 볼 때 원액 실리카 슬러리와 대등한 슬러리 특성을 얻을 수 있었다. 따라서 본 연구에서 제안하는 MnO2-MAS를 사용하면 고가의 소모재인 슬러리를 절약하는데 매우 유용할 것이다.

선형 롤 CMP에서 플로팅 노즐을 이용한 연마 특성에 관한 연구 (A Study on the Polishing Characteristics Using Floating Nozzle in Linear Roll CMP)

  • 이치호;정해도
    • 한국정밀공학회지
    • /
    • 제32권7호
    • /
    • pp.627-631
    • /
    • 2015
  • Conventional etching technology is in the face of problems such as dishing, erosion resulting from non-uniform removal of film. Advanced printed circuit board (PCB) requires accurate wire formation with the aid of planarization by chemical mechanical polishing (CMP). Linear roll CMP is a line contact continuous process which removes the film by pressurization and rotation while slurry is supplied to polishing pad attached to the roll. This paper focuses on the design of floating nozzle on the linear roll CMP equipment which makes the slurry supply uniformly on the roll pad. Experimental results show that removal rate using the floating nozzle increases 3 times higher than that without it and non-uniformity is less than 15%.

CMP에서 패드 그루브의 채수가 연마특성에 미치는 영향 (The Effect of Pad Groove Dimension on Polishing Performance in CMP)

  • 박기현;김형재;정영석;정해도;박재홍
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2004년도 하계학술대회 논문집 Vol.5 No.2
    • /
    • pp.1308-1311
    • /
    • 2004
  • It is very important that get polishing characteristic that to be stable that accomplish planarization of high efficiency in chemical mechanical polishing, and there is repeatability Groove of pad causes much effects in flow of slurry among various factors that influence in polishing characteristic, is expected to cause change of lubrication state and polishing characteristic in contact between wafer and pad. Therefore, divided factors of pad groove by groove pattern, groove profile, groove dimensions. This research wishes to study effect that dimension of pad groove gets in polishing performance. When changed dimension (width, depth, pitch of groove) of groove, measured change of removal rate and friction force. According as groove dimension changes, could confirm that removal rate and friction force change. While result of this experiment studies effect of pad groove in CMP, it is expected to become small help.

  • PDF

CMP 연마입자의 마찰력과 연마율에 관한 영향 (Effect of Abrasive Particles on Frictional Force and Abrasion in Chemical Mechanical Polishing(CMP))

  • 김구연;김형재;박범영;이현섭;박기현;정해도
    • 한국전기전자재료학회논문지
    • /
    • 제17권10호
    • /
    • pp.1049-1055
    • /
    • 2004
  • Chemical Mechanical Polishing (CMP) is referred to as a three body tribological system, because it includes two solids in relative motion and the CMP slurry. On the assumption that the abrasives between the pad and the wafer could be a major reason not only for the friction force but also for material removal during polishing, the friction force generated during CMP process was investigated with the change of abrasive size and concentration of CMP slurry. The threshold point of average coefficient of friction (COF) with increase in abrasives concentration during interlayer dielectric (ILD) CMP was found experimentally and verified mathematically based on contact mechanics. The predictable models, Mode I (wafer is in contact with abrasives and pad) and Mode II (wafer is in contact with abrasives only), were proposed and used to explain the threshold point. The average COF value increased in the low abrasives concentration region which might be explained by Mode I. In contrast the average COF value decreased at high abrasives concentration which might be regarded to as Mode II. The threshold point observed seemed to be due to the transition from Mode I to Mode II. The tendency of threshold point with the variation of abrasive size was studied. The increase of particle radius could cause contact status to reach transition area faster. The correlation between COF and material removal rate was also investigated from the tribological and energetic point of view. Due to the energy loss by vibration of polishing equipment, COF value is not proportional to the material removal rate in this experiment.

CMP시 SiO2 슬러리의 마찰 특성과 연마결과에 관한 연구 (A Study on Frictional Characteristics and Polishing Result of SiO2 Slurry in CMP)

  • 이현섭;박범영;서헌덕;정재우;정석훈;정해도
    • 대한기계학회논문집A
    • /
    • 제29권7호
    • /
    • pp.983-989
    • /
    • 2005
  • The effects of mechanical parameters on the characteristics of chemical mechanical polishing(CMP) can be directly evaluated by friction force. The piezoelectric quartz sensor for friction force measurement was installed, and friction force could be detected during CMP process. Furthermore, friction energy can be calculated by multiplying relative velocity by integration of the friction force throughout the polishing time. $SiO_2$ slurry for interlayer dielectric(ILD) CMP was used in this experiment to consider the relation of frictional characteristics and polishing results. From this experiment, it is proven that the friction energy is an essential factor of removal rate. Also, the friction force is related to removal amount per unit length(dH/ds) and friction energy has corelation to the removal rate(dH/dt) and process temporature. Moreover, within wafer non-unifornity(WIWNU) is related to coefficient of friction because of the mechanical moment equilibrium. Therefore, the prediction of polishing result would be possible by measuring friction force.

측면 전계 방출 소자를 위한 화학적-기계적 연마를 이용한 새로운 미소 간격 제작 기술 (A Novel Sub-Micron Gap Fabrication Technology using Chemical-Mechanical Polishing (CMP) for Lateral Field Emission Device (FED))

  • 이춘섭;한철희
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제50권9호
    • /
    • pp.466-470
    • /
    • 2001
  • We have developed a sub-micron gap fabrication technology using chemical-mechanical polishing (CMP) without /the sub-micron lithography equipments (0.18∼0.25 7m). And it has been applied to a lateral field emission device (FED), in which narrow gap distance is very important for reducing turn-on voltage. As a result, the turn-on voltage (at which the current level is 1 nA) of the fabricated device with the gap distance of 256 nm is as low as 4.0 V, which is the lowest turn-on voltage among lateral FEDs ever reported.

  • PDF

BTO 박막의 화학적 기계적 연마 특성 연구 (Study on Characteristics of Chemical Mechanical Polishing of BTO Thin Film)

  • 고필주;김남훈;박진성;서용진;이우선
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2005년도 하계학술대회 논문집 Vol.6
    • /
    • pp.113-114
    • /
    • 2005
  • Sufficient removal rate with adequate selectivity to realize the pattern mask of tetra-ethyl ortho-silicate (TEOS) film for the vertical sidewall angle were obtained by chemical mechanical polishing (CMP) with commercial silica slurry as a function of pH variation. The changes of X-ray diffraction pattern and dielectric constant by CMP process were negligible.

  • PDF

고정입자 패드를 이용한 텅스텐 CMP에 관한 연구 (The Study of Metal CMP Using Abrasive Embedded Pad)

  • 박재홍;김호윤;정해도
    • 한국정밀공학회지
    • /
    • 제18권12호
    • /
    • pp.192-199
    • /
    • 2001
  • Chemical mechanical planarization (CMP) has emerged as the planarization technique of choice in both front-end and back-end integrated circuit manufacturing. Conventional CMP process utilize a polyurethane polishing pad and liquid chemical slurry containing abrasive particles. There hale been serious problems in CMP in terms of repeatability and deflects in patterned wafers. Especial1y, dishing and erosion defects increase the resistance because they decrease the interconnection section area, and ultimately reduce the lifetime of the semiconductor. Methods to reduce dishing & erosion have recently been interface hardness of the pad, optimization of the pattern structure as dummy patterns. Dishing & erosion are initially generated an uneven pressure distribution in the materials. These defects are accelerated by free abrasives and chemical etching. Therefore, it is known that dishing & erosion can be reduced by minimizing the abrasive concentration. Minimizing the abrasive concentration by using CeO$_2$is the best solution for reducing dishing & erosion and for removal rate. This paper introduce dishing & erosion generating mechanism and a method fur developing a semi-rigid abrasive pad to minimize dishing & erosion during CMP.

  • PDF