Abstract
Chemical mechanical planarization (CMP) has emerged as the planarization technique of choice in both front-end and back-end integrated circuit manufacturing. Conventional CMP process utilize a polyurethane polishing pad and liquid chemical slurry containing abrasive particles. There hale been serious problems in CMP in terms of repeatability and deflects in patterned wafers. Especial1y, dishing and erosion defects increase the resistance because they decrease the interconnection section area, and ultimately reduce the lifetime of the semiconductor. Methods to reduce dishing & erosion have recently been interface hardness of the pad, optimization of the pattern structure as dummy patterns. Dishing & erosion are initially generated an uneven pressure distribution in the materials. These defects are accelerated by free abrasives and chemical etching. Therefore, it is known that dishing & erosion can be reduced by minimizing the abrasive concentration. Minimizing the abrasive concentration by using CeO$_2$is the best solution for reducing dishing & erosion and for removal rate. This paper introduce dishing & erosion generating mechanism and a method fur developing a semi-rigid abrasive pad to minimize dishing & erosion during CMP.