• Title/Summary/Keyword: chemical mechanical planarization (CMP)

Search Result 218, Processing Time 0.029 seconds

Electrochemical Polarization Characteristics and Effect of the CMP Performances of Tungsten and Titanium Film by H2O2 Oxidizer (H2O2 산화제가 W/Ti 박막의 전기화학적 분극특성 및 CMP 성능에 미치는 영향)

  • Na, Eun-Young;Seo, Yong-Jin;Lee, Woo-Sun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.6
    • /
    • pp.515-520
    • /
    • 2005
  • CMP(chemical mechanical polishing) process has been attracted as an essential technology of multi-level interconnection. Also CMP process got into key process for global planarization in the chip manufacturing process. In this study, potentiodynamic polarization was carried out to investigate the influences of $H_2O_2$ concentration and metal oxide formation through the passivation on tungsten and titanium. Fortunately, the electrochemical behaviors of tungsten and titanium are similar, an one may expect. As an experimental result, electrochemical corrosion of the $5\;vol\%\;H_2O_2$ concentration of tungsten and titanium films was higher than the other concentrations. According to the analysis, the oxidation state and microstructure of surface layer were strongly influenced by different oxidizer concentration. Moreover, the oxidation kinetics and resulting chemical state of oxide layer played critical roles in determining the overall CMP performance. Therefore, we conclude that the CMP characteristics tungsten and titanium metal layer including surface roughness were strongly dependent on the amounts of hydrogen peroxide oxidizer.

The Surry Characteristic Using Monitoring System in MEMS CMP (MEMS CMP에서 모니터링 시스템을 이용한 슬러리 특성)

  • Park, Sung-Min;Jeong, Suk-Hoon;Park, Boum-Young;Lee, Sang-Gik;Jeong, Won-Duk;Jang, One-Moon;Jeong, Hae-Do
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.573-574
    • /
    • 2006
  • The planarization technology of Chemical-mechanical polishing(CMP), used for the manufacturing of multi-layer various material interconnects for Large-scale Integrated Circuits (LSI), is also readily adaptable as an enabling technology in MicroElectroMechanical System (MEMS) fabrication, particularly polysilicon surface micromachining. However, general LSI device CMP has partly distinction aspects, the pattern scale and material sorts in comparison with MEMS CMP. This study performed preliminary CMP tests to identify slurry characteristic used in general IC device. The experiment result is possible to verify slurry characteristic in MEMS structure material.

  • PDF

A Study on the recycle of CMP Slurry Abrasives (CMP 슬러리 연마제의 재활용에 대한 연구)

  • Lee, Kyoung-Jin;Kim, Gi-Uk;Park, Sung-Woo;Choi, Woon-Shik;Seo, Yong-Jin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.05d
    • /
    • pp.109-112
    • /
    • 2003
  • Recently, CMP (Chemical mechanical polishing) technology has been widely used for global planarization of multi-level interconnection for ULSI applications. However, COO (cost of ownership) and COC (cost of consumables) were relatively increased because of expensive slurry. In this paper, we have studied the possibility of recycle of reused silica slurry in order to reduce the costs of CMP slurry. Also, we have collected the silica abrasive powders by filtering after subsequent CMP process for the purpose of abrasive particle recycling. And then, we annealed the collected abrasive powders to promote the mechanical strength of reduced abrasion force. Finally, we compared the CMP characteristics between self-developed KOH-based silica abrasive slurry and original slurry. As our experimental results, we obtained the comparable removal rate and good planarity with commercial products. Consequently, we can expect the saving of high cost slurry.

  • PDF

Development and Evaluation of Fixed Abrasive Pad in Tungsten CMP (고정입자패드를 이용한 텅스텐 CMP 개발 및 평가)

  • Park, Boumyoung;Kim, Hoyoun;Kim, Gooyoun;Jeong, Haedo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.2 no.4
    • /
    • pp.17-24
    • /
    • 2003
  • Chemical mechanical polishing(CMP) has been applied for planarization of topography after patterning process in semiconductor fabrication process. Tungsten CMP is necessary to build up interconnects of semiconductor device. But the tungsten dishing and the oxide erosion defects appear at end-point during tungsten CMP. It has been known that the generation of dishing and erosion is based on the over-polishing time, which is determined by pattern selectivity. Fixed abrasive pad takes advantage of decreasing the defects resulting flam reducing pattern selectivity because of the lower abrasive concentration. The manufacturing technique of fixed abrasive pad using hydrophilic polymers is introduced in this paper. For application to tungsten CMP, chemicals composed of oxidizer, catalyst, and acid were developed. In comparison of the general pad and slurry for tungsten CMP, the fixed abrasive pad and the chemicals resulted in appropriate performance in point of removal rate, uniformity, material selectivity and roughness.

  • PDF

The Characterization of the Conditioner Disks with Various Diamond Shapes (다이아몬드 형상에 따른 컨디셔너 디스크의 특성 평가)

  • Kim, Kyu-Chae;Kang, Young-Jae;Yu, Young-Sam;Park, Jin-Goo;Won, Young-Man;Oh, Kwang-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.563-564
    • /
    • 2006
  • Recently, CMP (Chemical Mechanical Polishing) is one of very important processing in semiconductor technology because of large integration and application of design role. CMP is a planarization process of wafer surface using the chemical and mechanical reactions. One of the most important components of the CMP system is the polishing pad. During the CMP process, the pad itself becomes smoother and glazing. Therefore it is necessary to have a pad conditioning process to refresh the pad surface, to remove slurry debris and to supply the fresh slurry on the surface. A diamond disk use during the pad conditioning. There are diamonds on the surface of diamond disk to remove slurry debris and to polish pad surface slightly, so density, shape and size of diamond are very important factors. In. this study, we characterized diamond disk with 9 kinds of sample.

  • PDF

Chemical Mechanical Polishing (CMP) Characteristics of BST Ferroelectric Film by Sol-Gel Method (졸겔법에 의해 제작된 강유전체 BST막의 기계.화학적인 연마 특성)

  • 서용진;박성우
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.53 no.3
    • /
    • pp.128-132
    • /
    • 2004
  • The perovskite ferroelectric materials of the PZT, SBT and BST series will attract much attention for application to ULSI devices. Among these materials, the BST ($Ba_0.6$$Sr_0.4$/$TiO_3$) is widely considered the most promising for use as an insulator in the capacitors of DRAMS beyond 1 Gbit and high density FRAMS. Especially, BST thin films have a good thermal-chemical stability, insulating effect and variety of Phases. However, BST thin films have problems of the aging effect and mismatch between the BST thin film and electrode. Also, due to the high defect density and surface roughness at grain boundarys and in the grains, which degrades the device performances. In order to overcome these weakness, we first applied the chemical mechanical polishing (CMP) process to the polishing of ferroelectric film in order to obtain a good planarity of electrode/ferroelectric film interface. BST ferroelectric film was fabricated by the sol-gel method. And then, we compared the surface characteristics before and after CMP process of BST films. We expect that our results will be useful promise of global planarization for FRAM application in the near future.

Dependence of Dishing on Fluid Pressure during Chemical Mechanical Polishing

  • Higgs III, C. Fred;Ng, Sum Huan;Zhou, Chunhong;Yoon, In-Ho;Hight, Robert;Zhou, Zhiping;Yap, LipKong;Danyluk, Steven
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.441-442
    • /
    • 2002
  • Chemical mechanical polishing (CMP) is a manufacturing process that uses controlled wear to planarize dielectric and metallic layers on silicon wafers. CMP experiments revealed that a sub-ambient film pressure developed at the wafer/pad interface. Additionally, dishing occurs in CMP processes when the copper-in-trench lines are removed at a rate higher than the barrier layer. In order to study dishing across a stationary wafer during polishing, dishing maps were created. Since dishing is a function of the total contact pressure resulting from the applied load and the fluid pressure, the hydrodynamic pressure model was refined and used in an existing model to study copper dishing. Density maps, highlighting varying levels of dishing across the wafer face at different radial positions, were developed. This work will present the results.

  • PDF

Physical and Chemical Characterization of Recycled Oxide CMP Slurry (재생된 옥사이드 CMP 슬러리의 물리적, 화학적 특징에 대한 연구)

  • 김명식;박진구;이관호
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2001.11a
    • /
    • pp.235-239
    • /
    • 2001
  • In recent years, as Chemical Mechanical Planarization(CMP) has been routinely utilized in integrated circuit(IC) fabrication, the consumption of slurry, main consumable in a CMP process, is greatly increased. Thus the reprocess of CMP slurries has been actively considered in the industry to reduce cost-of-consumable (COC). The main purpose of this study was to recycle the used oxide slurry using filters as a new method. As a result, Ultra Fine(UF) Filter could distinguish silica from the used oxide slurry and Reverse Osmosis(RO) Filter could distinguish Deionized(DI) Water and chemistry from chemistry solution. The tetraethylorthosilicate removal rate was almost the same as the number of recycle polishing was increased, when it was modified by slightly adding new SS-12 slurry. The microscratch didnt found as the number of recycle polishing was increased.

  • PDF

Measurement of Cohesion Force between Diamond and Matrix in CMP Pad Conditioner

  • Kang, Seung-Koo;Song, Min-Seok;Jee, Won-Ho
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1128-1129
    • /
    • 2006
  • Currently Chemical Mechanical Planarization (CMP) has become an essential step in the overall semiconductor wafer fabrication technology. Especially the CMP pad conditioner, one of the diamond tools, is required to have strong diamond cohesion. Strong cohesion between diamond and metal matrix prevents macro scratch on the wafer during CMP Process. Typically the diamond tool has been manufactured by sintered, brazed and electro-plated methods. In this paper, some results will be reported of cohesion between diamond and metal matrix of the diamond tools prepared by three different manufacturing methods. The cohesion force of brazed diamond tool is found stronger than the others. This cohesion force is increased in reverse proportion to the contact area of diamond and metal matrix. The brazed diamond tool has a strong chemical combination of the interlayer composed of Cr in metal matrix and C in diamond, which enhance the interfacial cohesion strength between diamonds and metal matrix.

  • PDF

Development of Tungsten CMP (Chemical Mechanical Planarization) Slurry using New Abrasive Particle (새로운 연마입자를 이용한 텅스텐 슬러리 개발)

  • Yu, Young-Sam;Kang, Young-Jae;Kim, In-Kwon;Hong, Yi-Koan;Park, Jin-Goo;Jung, Seok-Jo;Byun, Jung-Hwan;Kim, Moon-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.571-572
    • /
    • 2006
  • Tungsten CMP needs interconnect of semiconductor device ULSI chip and metal plug formation, CMP technology is essential indispensable method for local planarization. This Slurry development also for tungsten CMP is important, slurry of metal wiring material that is used present is depending real condition abroad. It is target that this research makes slurry of efficiency that overmatch slurry that is such than existing because focus and use colloidal silica by abrasive particle to internal production technology development. Compared selectivity of slurry that is developed with competitor slurry using 8" tungsten wafer and 8" oxide wafer in this experiment. And removal rate measures about density change of $H_2O_2$ and Fe particle. Also, corrosion potential and current density measure about Fe ion and Fe particle. As a result, selectivity find 83:1, and expressed similar removal rate and corrosion potential and current density value comparing with competitor slurry.

  • PDF