• Title/Summary/Keyword: chemical composition, mineral

Search Result 542, Processing Time 0.031 seconds

Occurrence and Chemical Composition of White Mica from Zhenzigou Pb-Zn Deposit, China (중국 Zhenzigou 연-아연 광상의 백색운모 산상과 화학조성)

  • Yoo, Bong Chul
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.35 no.2
    • /
    • pp.83-100
    • /
    • 2022
  • The Zhenzigou Pb-Zn deposit, which is one of the largest Pb-Zn deposit in the northeast of China, is located at the Qingchengzi mineral field in Jiao Liao Ji belt. The geology of this deposit consists of Archean granulite, Paleoproterozoinc migmatitic granite, Paleo-Mesoproterozoic sodic granite, Paleoproterozoic Liaohe group, Mesozoic diorite and Mesozoic monzoritic granite. The Zhenzigou deposit which is a strata bound SEDEX or SEDEX type deposit occurs as layer ore and vein ore in Langzishan formation and Dashiqiao formation of the Paleoproterozoic Liaohe group. White mica from this deposit are occured only in layer ore and are classified four type (Type I : weak alteration (clastic dolomitic marble), Type II : strong alteration (dolomitic clastic rock), Type III : layer ore (dolomitic clastic rock), Type IV : layer ore (clastic dolomitic marble)). Type I white mica in weak alteration zone is associated with dolomite that is formed by dolomitization of hydrothermal metasomatism. Type II white mica in strong alteration zone is associated with dolomite, ankerite, quartz and alteration of K-feldspar by hydrothermal metasomatism. Type III white mica in layer ore is associated with dolomite, ankerite, calcite, quartz and alteration of K-feldspar by hydrothermal metasomatism. And type IV white mica in layer ore is associated with dolomite, quartz and alteration of K-feldspar by hydrothermal metasomatism. The structural formulars of white micas are determined to be (K0.92-0.80Na0.01-0.00Ca0.02-0.01Ba0.00Sr0.01-0.00)0.95-0.83(Al1.72-1.57Mg0.33-0.20Fe0.01-0.00Mn0.00Ti0.02-0.00Cr0.01-0.00V0.00Sb0.02-0.00Ni0.00Co0.02-0.00)1.99-1.90(Si3.40-3.29Al0.71-0.60)4.00O10(OH2.00-1.83F0.17-0.00)2.00, (K1.03-0.84Na0.03-0.00Ca0.08-0.00Ba0.00Sr0.01-0.00)1.08-0.85(Al1.85-1.65Mg0.20-0.06Fe0.10-0.03Mn0.00Ti0.05-0.00Cr0.03-0.00V0.01-0.00Sb0.02-0.00Ni0.00Co0.03-0.00)1.99-1.93(Si3.28-2.99Al1.01-0.72)4.00O10(OH1.96-1.90F0.10-0.04)2.00, (K1.06-0.90Na0.01-0.00Ca0.01-0.00Ba0.00Sr0.02-0.01)1.10-0.93(Al1.93-1.64Mg0.19-0.00Fe0.12-0.01Mn0.00Ti0.01-0.00Cr0.01-0.00V0.00Sb0.00Ni0.00Co0.05-0.01)2.01-1.94(Si3.32-2.96Al1.04-0.68)4.00O10(OH2.00-1.91F0.09-0.00)2.00 and (K0.91-0.83Na0.02-0.01Ca0.02-0.00Ba0.01-0.00Sr0.00)0.93-0.83(Al1.84-1.67Mg0.15-0.08Fe0.07-0.02Mn0.00Ti0.04-0.00Cr0.06-0.00V0.02-0.00Sb0.02-0.01Ni0.00Co0.00)2.00-1.92(Si3.27-3.16Al0.84-0.73)4.00O10(OH1.97-1.88F0.12-0.03)2.00, respectively. It indicated that white mica of from the Zhenzigou deposit has less K, Na and Ca, and more Si than theoretical dioctahedral mica. Compositional variations in white mica from the Zhenzigou deposit are caused by phengitic or Tschermark substitution [(Al3+)VI+(Al3+)IV <-> (Fe2+ or Mg2+)VI+(Si4+)IV] substitution. It means that the Fe in white mica exists as Fe2+ and Fe3+, but mainly as Fe2+. Therefore, white mica from layer ore of the Zhenzigou deposit was formed in the process of remelting and re-precipitation of pre-existed minerals by hydrothermal metasomatism origined metamorphism (greenschist facies) associated with Paleoproterozoic intrusion. And compositional variations in white mica from the Zhenzigou deposit are caused by phengitic or Tschermark substitution [(Al3+)VI+(Al3+)IV <-> (Fe2+ or Mg2+)VI+(Si4+)IV] substitution during hydrothermal metasomatism depending on wallrock type, alteration degree and ore/gangue mineral occurrence frequency.

The Geochemical and Zircon Trace Element Characteristics of A-type Granitoids in Boziguoer, Baicheng County, Xinjiang (중국 신장 위그루자치구 바이청현 보즈구얼의 A형화강암류의 지화학 및 지르콘 미량원소특징에 대한 연구)

  • Yin, Jingwu;Liu, Chunhua;Park, Jung Hyun;Shao, Xingkun;Yang, Haitao;Xu, Haiming;Wang, Jun
    • Economic and Environmental Geology
    • /
    • v.46 no.2
    • /
    • pp.179-198
    • /
    • 2013
  • The Boziguoer A-type granitoids in Baicheng County, Xinjiang, belong to the northern margin of the Tarim platform as well as the neighboring EW-oriented alkaline intrusive rocks. The rocks comprise an aegirine or arfvedsonite quartz alkali feldspar syenite, an aegirine or arfvedsonite alkali feldspar granite, and a biotite alkali feldspar syenite. The major rock-forming minerals are albite, K-feldspar, quartz, arfvedsonite, aegirine, and siderophyllite. The accessory minerals are mainly zircon, pyrochlore, thorite, fluorite, monazite, bastnaesite, xenotime, and astrophyllite. The chemical composition of the alkaline granitoids show that $SiO_2$ varies from 64.55% to 72.29% with a mean value of 67.32%, $Na_2O+K_2O$ is high (9.85~11.87%) with a mean of 11.14%, $K_2O$ is 2.39%~5.47% (mean = 4.73%), the $K_2O/Na_2O$ ratios are 0.31~0.96, $Al_2O_3$ ranges from 12.58% to 15.44%, and total $FeO^T$ is between 2.35% and 5.65%. CaO, MgO, MnO, and $TiO_2$ are low. The REE content is high and the total ${\sum}REE$ is $(263{\sim}1219){\times}10^{-6}$ (mean = $776{\times}10^{-6}$), showing LREE enrichment HREE depletion with strong negative Eu anomalies. In addition, the chondrite-normalized REE patterns of the alkaline granitoids belong to the "seagull" pattern of the right-type. The Zr content is $(113{\sim}1246){\times}10^{-6}$ (mean = $594{\times}10^{-6}$), Zr+Nb+Ce+Y is between $(478{\sim}2203){\times}10^{-6}$ with a mean of $1362{\times}10^{-6}$. Furthermore, the alkaline granitoids have high HFSE (Ga, Nb, Ta, Zr, and Hf) content and low LILE (Ba, K, and Sr) content. The Nb/Ta ratio varies from 7.23 to 32.59 (mean = 16.59) and the Zr/Hf ratio is 16.69~58.04 (mean = 36.80). The zircons are depleted in LREE and enriched in HREE. The chondrite-normalized REE patterns of the zircons are of the "seagull" pattern of the left-inclined type with strong negative Eu anomaly and without a Ce anomaly. The Boziguoer A-type granitoids share similar features with A1-type granites. The average temperature of the granitic magma was estimated at $832{\sim}839^{\circ}C$. The Boziguoer A-type granitoids show crust-mantle mixing and may have formed in an anorogenic intraplate tectonic setting under high-temperature, anhydrous, and low oxygen fugacity conditions.

Remediation of Arsenic Contaminated soils Using a Hybrid Technology Integrating Bioleaching and Electrokinetics (생용출과 전기동력학을 연계한 통합기술을 이용한 비소 오염 토양의 정화)

  • Lee, Keun-Young;Kimg, Kyoung-Woong;Kim, Soon-Oh
    • Journal of Soil and Groundwater Environment
    • /
    • v.14 no.2
    • /
    • pp.33-44
    • /
    • 2009
  • The objective of the study was to develop a hybrid technology integrating biological and physicochemical technologies to efficiently remediate arsenic contaminated lands such as abandoned mine area. The tailing soil samples contaminated with As at a high level were obtained from Songchon abandoned mine, and the content of arsenic and heavy metals as well as physicochemical properties and mineral composition were investigated. In addition, two sets of sequential extraction methods were applied to analyze chemical speciations of arsenic and heavy metals to expect their leachability and mobility in geoenvironment. Based on these geochemical data of arsenic and heavy metal contaminants, column-type experiments on the bioleaching of arsenic were undertaken. Subsequently, experiments on the hybrid process incorporating bioleaching and electrokinetics were accomplished and its removal efficiency of arsenic was compared with that of the individual electrokinetic process. With the results, finally, the feasibilty of the hybrid technnology was evaluated. The arsenic removal efficiencies of the individual electrokinetic process (44 days) and the hybrid process incorporating bioleaching (28 days) and electrokinetics (16 dyas) were measured 57.8% and 64.5%, respectively, when both two processes were operated in an identical condition. On the contrary, the arsenic removal efficiency during the bioleaching process (28 days) appeared relatively lower (11.8%), and the result indicates that the bioleaching process enhanced the efficacy of the electrokinetic process as a result of mobilization of arsenic rather than removed arsenic by itself. In particular, the arsenic removal rate of the electrokinetics integrated with bioleaching was observed over than 2 times larger than that obtained by the electrokinetics alone. From the results of the study, if the bioleaching which is considered a relatively economic process is applied sufficiently prior to electrokinetics, the removal efficiency and rate of arsenic can be significantly improved. Consequently, the study proves the feasibility of the hybrid process integrating both technologies.

Assessment of Contamination and Geochemical Dispersion by Heavy Metals in Roadside Tree Leaves of Platanus occidentalis and Soils in the City of Seoul (서울시 가로수목 중 플라타너스 잎과 토양의 중금속 원소에 대한 지구화학적 분산과 오염평가)

  • Choo, Mi Kyung;Lee, Jin-Soo;Lee, Jeonghoon;Kim, Kyu-Han
    • Economic and Environmental Geology
    • /
    • v.47 no.4
    • /
    • pp.405-420
    • /
    • 2014
  • To investigate geochemical characteristics of soil and atmospheric environments by anthropogenic source, we have analyzed and determined heavy metal concentrations of the surface soils beneath roadside trees and leaves of Platanus occidentalis from 52 points in Seoul during autumn 2001. For comparison of the contents of heavy metal for the soil and leaf, we have analyzed heavy metal contents of the surface soils beneath roadside trees and leaves from 2 points in rural area of Yesan during the same time period. The composition of heavy metals of soils are relatively high for Cd, Co, Cr and Ni in industrial area (IA, Industrial Area) and high for Cu, Pb and Zn in heavy traffic area (HTA, Heavy Traffic Area). The heavy metal contents of rural area in Seoul are higher than those in Yesan. The differences of chemical compositions between the washed and unwashed leaves are high for Cd, Cu, Pb and Zn in the HTA. The element couples of Cd-Co, Cr-Ni and Pb-Zn for the soils had shown a good correlation and their contamination sources could be similar. The relationship for Pb-Cu and Cu-Zn showed good correlation in Platanus leaves. The relationship between soils and unwashed leaves show a good correlation for Cr, Cu, Pb and Zn but low correlation for Cd, Co, Fe, Mn and Ni. It is thought that the Cr, Cu, Pb and Zn were derived from contaminants of soils, whereas Cd, Co, Fe, Mn and Ni were originated from atmospheric source. From the spatial variations of elements for soils and leaves, Ni and Cr were dominant in the soils of IA and Cd, Cu and Zn were dominant in those of HTA. The Contamination by Cd-Pb and Cu-Zn in unwashed leaves were analyzed to show similar patterns. Using the enrichment factors (EF) of heavy metals in unwashed leaves, the EF sequences were to be Cu, Zn, Pb, Mn, Co, Ni, Cd and Cr. We identified that Cu, Zn, Pb and Mn were most problematic of environmental hazard in Seoul.

EFFECT OF 10% CARBAMIDE PEROXIDE ON DENTIN (상아질에 대한 10% Carbamide peroxide가 미치는 영향)

  • Seo, Sang-Woo;Kown, Yong-Hoon;Kim, Hyun-Jung;Nam, Soon-Hyeun;Kim, Kyo-Han;Kim, Young-Jin
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.30 no.3
    • /
    • pp.423-430
    • /
    • 2003
  • The teeth bleaching with bleaching agent is widely used at recent times. Until yet the exact mechanism of the bleaching agent isn't known but it is thought that is by the complex reduction-oxidation reaction of the decomposed free radical from bleaching agent through various ways. In other words, it is supposed that the teeth are whitened by agent's changing chemical structures of stain-causing materials. The purpose of this study is to exam the change of the dentinal character by bleaching agent and to evaluate the safety of this agent. For this study, after applying 10% carbamide peroxide to enamel of human premolar for 6 hours a day for 2 weeks we examined changes of surface morphology, microhardness, composition and contents of minirals in human dentin using SEM, microhardness tester, FT-Raman spectrometer and EPMA and got following results. There was no significant difference in surface morphologic change when we examined the effect of 10% carbamide peroxide which penetrated into dentin after applied on enamel surface comparing with result from specimen in distilled water No change was shown on the surface of peritubular and intertubular dentin within the nanometeric range. The microhardness between bleached teeth and teeth stored in distilled water showed no statistically significant difference FT-Raman spectra of dentin exhibited no change of the component in human dentin. Only the least change in peaks of organic and inorganic materials were detected in Raman intencity. The total content of mineral elements in dentin with no treatment, stored only in distilled water and stored in distilled water after bleaching were $98.73{\pm}1.89,\;98.56{\pm}2.11\;and\;97.47{\pm}2.51$ respectively. Also they showed no statistically significant difference. From above results, the effect of 10% carbamide peroxide bleaching on structure of dentin is very low and the results may confirm the safety of this bleaching agent.

  • PDF

Occurrence of Natural Radioactive Materials in Borehole Groundwater and Rock Core in the Icheon Area (이천지역 시추공 지하수와 시추코어내 자연방사성물질 산출 특성)

  • Jeong, Chan-Ho;Kim, Dong-Wook;Kim, Moon-Su;Lee, Young-Joon;Kim, Tae-Seung;Han, Jin-Seok;Jo, Byung-Uk
    • The Journal of Engineering Geology
    • /
    • v.22 no.1
    • /
    • pp.95-111
    • /
    • 2012
  • This study investigated the relationship between the geochemical environment and the occurrence of natural radioactive materials (uranium and Rn-222) in borehole groundwater at an Icheon site. The drill core recovered from the study site consists mainly of biotite granite with basic dykes. The groundwater samples were collected at four different depths in the borehole using the double-packed system. The pH range of the groundwater was 6.5~8.6, and the chemical type was Ca-$HCO_3$. The ranges of uranium and Rn-222 concentrations in the groundwater were 8.81~1,101 ppb and 5,990~11,970 pCi/L, respectively, and concentrations varied greatly with depth and collection time. The ranges of uranium and thorium contents in drill core were 0.53~18.3 ppm and 6.66~17.5 ppm, respectively. Microscope observations and electron microprobe analyses revealed the presence of U and Th as substituted elements for major composition of monazite, ilmenite, and apatite within K-feldspar and biotite. Although the concentration of uranium and thorium in the drill core was not high, the groundwater contained a high level of natural radioactive materials. This finding indicates that physical factors, such as the degree of fracturing of an aquifer and the groundwater flow rate, have a greater influence on the dissolution of radioactive materials than does the geochemical condition of the groundwater and rock. The origin of Rn-222 can be determined indirectly, using an interrelationship diagram of noble gas isotopes ($^3He/^4He$ and $^4He/^{20}Ne$).

Mineral Chemistry of Cassiterite, Columbite, Tantalite and Associated Minerals from Soonkyoung Tin-bearing Pegmatite (순경(順鏡) 페그마타이트에서 산출(産出)되는 석석(錫石), 콜럼바이트, 탄탈라이트 및 수반광물(隨伴鑛物)에 대한 광물화학(鑛物化學))

  • Kim, Soo-Young;Moon, Hi-Soo;Park, No Young
    • Economic and Environmental Geology
    • /
    • v.22 no.4
    • /
    • pp.327-339
    • /
    • 1989
  • Cassiterite, tantalite, columbite and tantalian rutile are found as accessory minerals in Soonkyoung tin-bearing pegmatites. These minerals occur as finely disseminated specks of up to micro-size in diameter and coarse grain size varying from 0.5-50mm in albite, muscovite and quartz assemblage. Cassiterite geneally shows a moderate to intense pleochroism, having a color brownish yellow to deep reddish brown. The substitution of $Ta^{+5}$, $Nb^{+5}$, $Ti^{+4}$ and Fe* for $Sn^{+4}$ in cassiterite ranges 0.01-0.10 mol%. The zoned cassiterite give a higher Ta/Nb ratios in margin than the ratios in core. This is due to the preferential $Ta^{+5}$ affinity to lower temperature during the crystallization of cassiterite. Tantalite-columbite and tantalian rutile occur in cassitertie with exsolution texture and/or infiltrate into the micro-fissures of cassiterite with micro quartz vein. The compositions of tantalite-columbite show the wide ranges of $Ta_2O_5$ : 14-46 wt.%, $Nb_2O_5$ : 60-28 wt. % and FeO*: 10.15 wt.%. The variation of chemical composition in tantalit-columbite exhibits the decreasing trends of $Mn^{+2}/M^{+2}+Fe^*$ with $Ta^{+5}/Ta^{+5}+Nb^{+5}$ increasing. These trends of vatiations indicate that the Ta/Nb fractionation are enhanced by higher Ta-complex activity in late stage of pegmatite consolidation and lower activity of F in agreements with the F-and Li-micas not to be developed in Soonkyoung tin-bearing pegmatite.

  • PDF

Geological Characteristics of Extra Heavy Oil Reservoirs in Venezuela (베네주엘라 초중질유 저류층 지질 특성)

  • Kim, Dae-Suk;Kwon, Yi-Kyun;Chang, Chan-Dong
    • Economic and Environmental Geology
    • /
    • v.44 no.1
    • /
    • pp.83-94
    • /
    • 2011
  • Extra heavy oil reservoirs are distributed over the world but most of them is deposited in the northern part of the Orinoco River in Venezuela, in the area of 5,500 $km^2$, This region, which has been commonly called "the Orinoco Oil Belt", contains estimated 1.3 trillion barrels of original oil-in-place and 250 billion barrels of established reserves. The Venezuela extra heavy oil has an API gravity of less than 10 degree and in situ viscosity of 5,000 cP at reservoir condition. Although the presence of extra heavy oil in the Orinoco Oil Belt has been initially reported in the 1930's, the commercial development using in situ cold production started in the 1990's. The Orinoco heavy oil deposits are clustered into 4 development areas, Boyaco, Junin, Ayachoco, and Carabobo respectively, and they are subdivided into totally 31 production blocks. Nowadays, PDVSA (Petr$\'{o}$leos de Venzuela, S.A.) makes a development of each production block with the international oil companies from more than 20 countries forming a international joint-venture company. The Eastern Venezuela Basin, the Orinoco Oil Belt is included in, is one of the major oil-bearing sedimentary basins in Venezuela and is first formed as a passive margin basin by the Jurassic tectonic plate motion. The major source rock of heavy oil is the late Cretaceous calcareous shale in the central Eastern Venezuela Basin. Hydrocarbon materials migrated an average of 150 km up dip to the southern margin of the basin. During the migration, lighter fractions in the hydrocarbon were removed by biodegradation and the oil changed into heavy and/or extra heavy oil. Miocene Oficina Formation, the main extra heavy oil reservoir, is the unconsolidated sand and shale alternation formed in fluvial-estuarine environment and also has irregularly a large number of the Cenozoic faults induced by basin subsidence and tectonics. Because Oficina Formation has not only complex lithology distribution but also irregular geology structure, geological evolution and characteristics of the reservoirs have to be determined for economical production well design and effective oil recovery. This study introduces geological formation and evolution of the Venezuela extra heavy oil reservoirs and suggest their significant geological characteristics which are (1) thickness and geometry of reservoir pay sands, (2) continuity and thickness of mud beds, (3) geometry of faults, (4) depth and geothermal character of reservoir, (5) in-situ stress field of reservoir, and (6) chemical composition of extra heavy oil. Newly developed exploration techniques, such as 3-D seismic survey and LWD (logging while drilling), can be expected as powerful methods to recognize the geological reservoir characteristics in the Orinoco Oil Belt.

Hydrochemistry and Occurrences of Natural Radioactive Materials from Groundwater in Various Geological Environment (다양한 지질환경에서 지하수의 수리화학 및 자연방사성물질 산출특성)

  • Jeong, Chan Ho;Lee, Yu Jin;Lee, Yong Cheon;Kim, Moon Su;Kim, Hyun Koo;Kim, Tae Seong;Jo, Byung Uk;Choi, Hyeon Young
    • The Journal of Engineering Geology
    • /
    • v.26 no.4
    • /
    • pp.531-549
    • /
    • 2016
  • The purpose of this study is to analyze the relationship of hydrochemistry, geology, fault with occurrence of uranium and radon-222 from the groundwater in the Yeongdong area. In this study, 49 groundwater and 4 surface water samples collected in the study area were collected on two separate occasions. The surface radioactivities were measured at 40 points to know the relationship between the occurrence of uranium in groundwater and surface geology. The chemical composition of groundwater showed three types : $Ca-HCO_3$, $Na-HCO_3$ and $Ca-HCO_3(SO_4,\;NO_3)$. Two groundwater of 49 samples exceeded the maximum contaminant levels of uranium, $30{\mu}g/L$, proposed by the Ministry of Environment of Korea and 11 groundwater of 40 samples for Rn-222 concentrations exceeded the 148 Bq/L maximum contaminant level of US EPA. Most of unsuitable groundwater are located in the geological boundary related with the biotite gneiss and the surface radioactivities of rock samples showed no relationship with groundwater geochemical constituents. The strike-slip fault, Youngdong fault, is $N45^{\circ}E$ direction and the high concentrations of uranium in upper part of fault, consisted of granite and granitic gneiss are detected but in lower part, consisted of metamorphic sedimentary rock are not detected. It suggests that the natural radioactive concentrations are related with the geologic characteristics and the migration and diffusion of natural radioactive materials are affected by the fault.

Occurrence and Forming Process of the Reddish Bed at Hwangto Cave, Ulleung Island, Korea (울릉도 황토굴 적색층의 산출특징과 형성기작)

  • Woo, Hyeon Dong;Jang, Yun Deuk
    • Journal of the Mineralogical Society of Korea
    • /
    • v.29 no.4
    • /
    • pp.239-254
    • /
    • 2016
  • The Hwangto cave is a sea cave which is located near shore in the Taeha-ri, Ulleung Island, being composed of the reddish tuff wall rock, the topic of this study, and the trachyte ceiling rock. The chemical compositions of the red tuff layer are 49.81-63.63% of $SiO_2$, 13.05-24.91% of $Al_2O_3$, 2.67-5.82% of $Fe_2O_3$, 2.87-6.92% of $Na_2O$, 2.37-3.85% of $K_2O$, 0.55-0.81% of $TiO_2$, 0-0.53% of MnO, 0.39-1.75% of MgO, and 0.60-1.40% of CaO with a pH ranging from 4.5 to 8. The reddish tuff are composed of 23.7-39.4% of anorthoclase, 16.9-33.3% of sanidine, 15.8-26.1% of illite, 5.1-9.0% of hematite, 0-3.7% of goethite, 6.9-9.9% of titanium oxide, and 0.9-9.5% of halite in mineral composition. Although it only includes anorthoclase, sanidine, and illite as major minerals, there can be additional vitric minerals that could not detected by the XRD. The mineralogy and textures of the tuff layer indicate that it became reddish due to the formation of amorphous palagonite and the oxidation of the iron as a heat from the trachytic lava affects the underlying tuff to altered. This iron oxides are enriched in the palagonite, or form microcrystalline or amorphous minerals. We thus suggest that the red tuff layer was generated by the combination of the thermal oxidation involved in the trachytic lava flow on the tuff layer, the palagonitization of the matrix of the tuff, and the oxidation of iron-bearing minerals.