DOI QR코드

DOI QR Code

Occurrence and Forming Process of the Reddish Bed at Hwangto Cave, Ulleung Island, Korea

울릉도 황토굴 적색층의 산출특징과 형성기작

  • Received : 2016.09.20
  • Accepted : 2016.12.31
  • Published : 2016.12.30

Abstract

The Hwangto cave is a sea cave which is located near shore in the Taeha-ri, Ulleung Island, being composed of the reddish tuff wall rock, the topic of this study, and the trachyte ceiling rock. The chemical compositions of the red tuff layer are 49.81-63.63% of $SiO_2$, 13.05-24.91% of $Al_2O_3$, 2.67-5.82% of $Fe_2O_3$, 2.87-6.92% of $Na_2O$, 2.37-3.85% of $K_2O$, 0.55-0.81% of $TiO_2$, 0-0.53% of MnO, 0.39-1.75% of MgO, and 0.60-1.40% of CaO with a pH ranging from 4.5 to 8. The reddish tuff are composed of 23.7-39.4% of anorthoclase, 16.9-33.3% of sanidine, 15.8-26.1% of illite, 5.1-9.0% of hematite, 0-3.7% of goethite, 6.9-9.9% of titanium oxide, and 0.9-9.5% of halite in mineral composition. Although it only includes anorthoclase, sanidine, and illite as major minerals, there can be additional vitric minerals that could not detected by the XRD. The mineralogy and textures of the tuff layer indicate that it became reddish due to the formation of amorphous palagonite and the oxidation of the iron as a heat from the trachytic lava affects the underlying tuff to altered. This iron oxides are enriched in the palagonite, or form microcrystalline or amorphous minerals. We thus suggest that the red tuff layer was generated by the combination of the thermal oxidation involved in the trachytic lava flow on the tuff layer, the palagonitization of the matrix of the tuff, and the oxidation of iron-bearing minerals.

황토굴은 울릉도 태하리 해안에 위치하고 있는 해식동굴로서, 벽면은 적색 응회암층으로 이루어져 있고 상부는 조면암으로 덮여있다. 적색 응회암에 대한 주화학성분은 $SiO_2$ 49.81-63.63%, $Al_2O_3$ 13.05-24.91%, $Fe_2O_3$ 2.67-5.82%, $Na_2O$ 2.87-6.92%, $K_2O$ 2.37-3.85% $TiO_2$ 0.55-0.81%, MnO 0-0.53%, MgO 0.39-1.75%, CaO 0.60-1.40%이며, 토질의 pH는 4.5-8의 범위를 나타내고, 광물성분은 아노르소클레이스(anorthoclase) 23.7-39.4%, 새니딘(sanidine) 16.9-33.3% 일라이트(illite) 15.8-26.1%, 적철석(hematite) 5.1-9.0%, 침철석(goethite) 0-3.7%, 산화티탄(titanium oxide) 6.9-9.9%, 소금(halite) 0.9-9.5%의 범위를 보인다. 하지만 현무암질 응회암층 기질의 내에 존재하는 대부분의 비정질 물질은 XRD회 절선이 나타나지 않으므로 아노르소클레이스, 새니딘, 일라이트가 적색층의 주성분이라고는 할 수 없다. 조면암 용암의 열은 하부의 응회암에 영향을 주어 기질을 쉽게 변질시키는데 이로 인해 적색의 비정질 집합체 팔라고나이트(palagonite)를 형성하고 철 성분을 산화시켜 주변을 채색한 것으로 보인다. 이렇게 이차적으로 형성된 철 산화물은 팔라고나이트 내부에 부화되거나, 극미립 또는 비정질의 철산화물의 형태로 존재하고 있다. 따라서 적색층은 조면암 분출 직후와 관련된 열적 산화작용과 응회암 기질의 팔라고나이트화, 적색층 내에 존재하는 함철광물의 산화작용에 의하여 복합적으로 형성된 것으로 판단된다.

Keywords

References

  1. Berkgaut, V., Singer, A., and Stahr, K. (1994) Palagonite reconsidered: paracrystalline illite-smectite from regoliths on basic pyroclastics. Clay and Clay Minerals, 42, 582-592. https://doi.org/10.1346/CCMN.1994.0420511
  2. Choo, C. O. (2001) Mineralogical characteristics of Illite and its application. Jour. Miner. Soc. Korea, 14, 29-37.
  3. Coombs, D. S. (1954) The nature and alteration of some triassic sediments from Southland, New Zealand. Royal soc. New Zwaland Trans., 82, 65-109.
  4. Correns, C. (1930) Uber einen basalt vom bode des atantischen Ozeans und senine Zersetzungsrinde. Chem Erd, 5, 76-86.
  5. Do, J. Y., Kim, S. J., Lee, S. J., Ahn, B. C. Yun, S. C. and Kim, K. J. (2009) A Study on Functionality of the Ulreungdo Seokganju as Korean Traditional Red Pigment. Journal of Mineralogical Society of Korea, 22, 153-162.
  6. Drief, A. and Schiffman, P. (2004) Very Low-Temperature Alteration of Sideromelane in Hyaloclastites and Hyalotuffs from Kilauea and Maunakea Volcanics: Implications for the Machanism of Palagonite Formation. Department of Geology, University of California, Davis, California, 52(5), 622-634. https://doi.org/10.1346/CCMN.2004.0520508
  7. Eberl, D. D. and Srodon, J. (1988) Ostwald ripening and interparticle-diffraction effects for illite crystals. Am. Miner., 73, 1335-1345.
  8. Eggleton, R. A. and Keller, J. (1982) The palagonitization of limburgite glass - a TEM study. Neues Jahrb Miner, 7, 321-336.
  9. Fisher, R. V. and Schmincke, H.-U. (1984) Alteration of oceanic volcanic glass: textural evidence of microbial. Science, 281, 978-980.
  10. Furnes, H. (1975) Experimental palagonitization of basaltic glasses of varied composition. Contrib Mineral Petrol, 50, 105-113. https://doi.org/10.1007/BF00373330
  11. Furnes, H. (1984) Chemical-changes during progressive subaerail palagonitization of a subglacial olivine tholeiite hyaloclastite - a microprobe study. Chem Geol, 43, 271-285. https://doi.org/10.1016/0009-2541(84)90054-8
  12. Gadanyi, P. (2008) Sea cave development in an alternating sequence of nearly horizontal basaltic hyaloclastite-and compact lava layers in Dyrholaey, Iceland - Cadernos do Laboratorio Xeoloxico de Laxe, 50, 155-165.
  13. Gwak, D. H. (2002) The traditional multicolored paintwork on wooden buildings in Korea, Hakyeon publication, 514p.
  14. Hay, R. L. (1966) Zeolites and Zeolitic Reactions in Sedimentary Rocks. Geol. Soc. Amer. Spec. Paper, 85, 130.
  15. Hay R. L. and Iijima A. (1968) Nature and origin of palagonite tuffs of the Honolulu Group on Oahu, Hawaii. In: Studies in volcanology - a memoir in honor of Howel Williams. Geological Society of America, Boulder, 331-376p.
  16. Iijima, S. and Utada, M. (1972) A critical revew on the occurrence of zeolites in sedimentary rocks in Japan Jour. Geol. Geogr., 42, 61-83.
  17. Inoue, A., Velde, B., Meunier, A., and Touchard, G. (1988) Mechanism of illite transformation during smectite-to-illite conversion in a hydrothermal system, Am. Miner. 73, 1325-1334.
  18. Jakobsson, S. P. (1972) On the consolidation and palagonitization of the tephra of the Surtsey volcanic island, Iceland. Surtsey Research Progress Report, 6, 121-128.
  19. Jakobsson, S. P. (1978) Environmental factors controlling the palagonitization of the Surtsey tephra, Iceland. Bull Geol. Soc. Den, 27, 91-105.
  20. Jeong, G. Y. and Sohn, Y. K. (2009) Basaltic glass alteration and lithification of the Holocene Hamori Formation, Jeju Island. Jour. Geol. Soc. Korea, 45, 331-344.
  21. Jercinovic, M. J., Keil, K., Smith, M. R., and Schmitt, R. A. (1990) Alteration of basaltic glasses from north-central British Columbia, Canada. Geochim Cosmochim Acta, 54, 2679-2696. https://doi.org/10.1016/0016-7037(90)90004-5
  22. Kim, Y. K. and Lee, D. S. (1983) Petrology of Alkali Volcanic Rocks in Northern part of Ulrung Island, Journal of Korean Institute of Mining Geology, 16, 19-36.
  23. Lee, D. S. (1954) Geology of the Ulleung Island, Collected papers in Nature science, Seoul National University, 1, 199-207.
  24. Lutze, W., Malow, G., Ewing, R. C., Jercinovic, M. J., and Keil, K. (1985) Alteration of basalt glasses: implications for modelling the long-term stability of nuclear waste glasses. Nature, 314, 252-255. https://doi.org/10.1038/314252a0
  25. Maynard, J. B. (1976) The long-term buffering of the oceans. Geochim Cosmochim Acta, 40, 1423-1532. https://doi.org/10.1016/0016-7037(76)90134-4
  26. Min, K. D., Kim, O. J., Yun, S., Lee, D. S., and Kim, K. H. (1988) Applicability of Plate Tectonics to the Post-Late Cretaceous Igneous Activity and Mineralization in the Southern Part of South Korea (II). Jour. Geol. Soc. Korea, 22, 11-40.
  27. Peacock, M. A. (1926) The petrology of Iceland, part 1. The basic tuffs. R Soc Edinb Trans, 55, 53-76.
  28. Peacock, M. A. and Fuller, R. E., 1928, Chlorophaeite, sideromelane and palagonite from the Columbia River Plateau. Am Mineral, 13, 360-383.
  29. Schmincke, H.-U. (2004) Volcanism. Berlin and Heidelberg: Springer. 131p.
  30. Singer, A. and Banin, A. (1990) Characteristics and mode of formation of palagonite - A review. in proc. 9th Int. Clay Conf., Strasbourg, 1989. Farmer, V. C. and Tardy, Y., eds Sci. Gwol., Mwm. 88, 173-181.
  31. Staudigel, H. and Hart, S. R. (1983) Alteration of basaltic glass: mechanisms and significance for the oceanic crust-sea water budget. Geochim Cosmochim Acta, 47, 337-350. https://doi.org/10.1016/0016-7037(83)90257-0
  32. Stroncik, N. A. and Schmincke H.-U. (2001) The evolution of palagonic crystallisation, chemical changes and element budget, Geochem Geophys Geosystems 2.
  33. Stroncik, N. A. and Schmincke H.-U. (2002) Palagonite: a review. Int. J. Earth Sci., 91, 680-697. https://doi.org/10.1007/s00531-001-0238-7
  34. Thorseth, I. H., Furnes, H., and Tumyr, O. (1991) A textural and chemical study of Icelandic palagonite of varied composition and its bearing on the mechanism of the glass-palagonite transformation. Geochim Cosmochim Acta, 55, 731-749. https://doi.org/10.1016/0016-7037(91)90337-5
  35. Walton, A. W. and Schiffman P. (2003) Alteration of hyaloclastites in the HSDP 2 Phase 1 Drill Core1. Description and paragenesis, Geochem Geophys Geosystems.
  36. Winter, J. (1989) Chemical Compositions of the Korean Ancient Pigment, 43, 1-36.
  37. Won, J. K. and Lee, M. W. (1984) The Volcanism and Petrology of alkali Volcanic rocks, Ulrung Island. Jour. Geol. Soc. Korea, 20, 296-305.
  38. Zhou, Z. H., Fyfe, W. S., Tazaki, K., and Vandergaast, S. J. (1992) The structural characteristics of palagonite from DSDP Site-335. Can Mineral, 30, 75-81.