DOI QR코드

DOI QR Code

The Geochemical and Zircon Trace Element Characteristics of A-type Granitoids in Boziguoer, Baicheng County, Xinjiang

중국 신장 위그루자치구 바이청현 보즈구얼의 A형화강암류의 지화학 및 지르콘 미량원소특징에 대한 연구

  • Yin, Jingwu (Chinese University of Geosciences) ;
  • Liu, Chunhua (State Key Laboratory for Continental Tectonics and Dynamics, Institute of Geology, Chinese Academy of Geological Sciences) ;
  • Park, Jung Hyun (Chinese University of Geosciences) ;
  • Shao, Xingkun (Detachment of General Gold Party, Chinese People's Armed Police Force) ;
  • Yang, Haitao (North-west institute of nonferrous metals geology) ;
  • Xu, Haiming (Institute of Mineral Resources, Chinese Academy of Geological Sciences) ;
  • Wang, Jun (Institute of Mineral Resources, Chinese Academy of Geological Sciences)
  • 윤경무 (중국지질대학교(북경)) ;
  • 유춘화 (북경 중국지질과학원, 지질연구소, 대륙구조와 대륙동력학 국가중점연구실) ;
  • 박정현 (중국지질대학교(북경)) ;
  • 소흥곤 (흑룡강성 중국인민무장경찰부대) ;
  • 양해도 (서안 유색금속지질서북학원) ;
  • 서해명 (북경 중국지질과학원 광산자원연구소) ;
  • 왕군 (북경 중국지질과학원 광산자원연구소)
  • Received : 2013.04.08
  • Accepted : 2013.04.19
  • Published : 2013.04.28

Abstract

The Boziguoer A-type granitoids in Baicheng County, Xinjiang, belong to the northern margin of the Tarim platform as well as the neighboring EW-oriented alkaline intrusive rocks. The rocks comprise an aegirine or arfvedsonite quartz alkali feldspar syenite, an aegirine or arfvedsonite alkali feldspar granite, and a biotite alkali feldspar syenite. The major rock-forming minerals are albite, K-feldspar, quartz, arfvedsonite, aegirine, and siderophyllite. The accessory minerals are mainly zircon, pyrochlore, thorite, fluorite, monazite, bastnaesite, xenotime, and astrophyllite. The chemical composition of the alkaline granitoids show that $SiO_2$ varies from 64.55% to 72.29% with a mean value of 67.32%, $Na_2O+K_2O$ is high (9.85~11.87%) with a mean of 11.14%, $K_2O$ is 2.39%~5.47% (mean = 4.73%), the $K_2O/Na_2O$ ratios are 0.31~0.96, $Al_2O_3$ ranges from 12.58% to 15.44%, and total $FeO^T$ is between 2.35% and 5.65%. CaO, MgO, MnO, and $TiO_2$ are low. The REE content is high and the total ${\sum}REE$ is $(263{\sim}1219){\times}10^{-6}$ (mean = $776{\times}10^{-6}$), showing LREE enrichment HREE depletion with strong negative Eu anomalies. In addition, the chondrite-normalized REE patterns of the alkaline granitoids belong to the "seagull" pattern of the right-type. The Zr content is $(113{\sim}1246){\times}10^{-6}$ (mean = $594{\times}10^{-6}$), Zr+Nb+Ce+Y is between $(478{\sim}2203){\times}10^{-6}$ with a mean of $1362{\times}10^{-6}$. Furthermore, the alkaline granitoids have high HFSE (Ga, Nb, Ta, Zr, and Hf) content and low LILE (Ba, K, and Sr) content. The Nb/Ta ratio varies from 7.23 to 32.59 (mean = 16.59) and the Zr/Hf ratio is 16.69~58.04 (mean = 36.80). The zircons are depleted in LREE and enriched in HREE. The chondrite-normalized REE patterns of the zircons are of the "seagull" pattern of the left-inclined type with strong negative Eu anomaly and without a Ce anomaly. The Boziguoer A-type granitoids share similar features with A1-type granites. The average temperature of the granitic magma was estimated at $832{\sim}839^{\circ}C$. The Boziguoer A-type granitoids show crust-mantle mixing and may have formed in an anorogenic intraplate tectonic setting under high-temperature, anhydrous, and low oxygen fugacity conditions.

신장 위구르 자치구 바이청현 보즈구얼 지역의 A형 화강암체는 타림지대의 북쪽 끝과 동서쪽 방향의 알칼리 관입암대에 접하여 위치해 있다. 이 화강암체는 추휘석(aegrine)이나 아페소나이트(arfvedsonite)-석영-알칼리장석 섬장암, 또는 아페소나이트-알칼리장석 화강암, 흑운모-알칼리장석 섬장암으로 구성되며, 주요광물로는 알바이트(albite), K-장석, 석영, 아페소나이트(arfvedsonite), 추휘석, 시데로필라이트(siderophyllite) 등이 있으며 부성분 광물로는 지르콘(zircon), 파이로클로르(pyrochlore), 토라이트(thorite), 형석, 모나자이트(monazite), 바스네사이트(bastnaesite), 제노타임(xenotime), 아스트로필라이트(astrophyllite) 등이 있다. 이 알칼리 화강암체는 67.32%의 평균값을 갖는 $SiO_2$를 포함하고 평균 11.14%의 높은 $Na_2O+K_2O$(9.85~11.87%) 조성을 보이며 이 중 $K_2O$는 평균 4.73%의 조성을 보인다. $K_2O/Na_2O$의 비는 0.31~0.96 사이이며 $Al_2O_3$는12.58%부터 15.44%사이로 포함되고 총 $FeO^T$함량은 2.35~5.65%이내이다. CaO, MgO, MnO, $TiO_2$의 함량은 낮은 것으로 관찰된다. 희토류원소의 총량은 평균 $77{\times}10^{-6}$으로 비교적 높게 나타나고 경희토원소는 농축되어 있지만 중희토원소는 Eu원소의 부(-)의 이상과 함께 상대적으로 결핍되는 특징을 가진다. 또한 알칼리 화강암체의 chondrite-normalized 희토류원소의 패턴은 오른쪽으로 기울어진 갈매기형태를 보인다. Zr는 평균 $594{\times}10^{-6}$의 함량을 보이며 Zr+Nb+Ce+Y는 평균 $1362{\times}10^{-6}$의 함량을 나타낸다. 또한 이 알칼리 화강암체는 높은 HFSE(Ga, Nb, Ta, Zr, Hf)함량과 낮은 LILE(Ba, K, Sr)함량을 보인다. Nb/Ta의 비는 평균 16.5이며 Zr/Hf의 비는 평균 36.80이다. 지르콘은 경희토원소에서 결핍되고 중희토원소에서 농축되어있다. 지르콘의 chondrite-normalized 희토류원소는 Eu원소의 강한 부(-)의 이상과 함께 왼쪽으로 기울어진 갈매기형태를 보인다. 보즈구얼지역의 A타입 화강암체는 A1타입의 화강암과 유사한 특징을 나타낸다. 화강암질 마그마의 평균온도는 $832{\sim}839^{\circ}C$이며 보즈구얼 지역의 A타입 화강암체는 지각과 맨틀의 혼합양상을 보이며 고온, 무수, 낮은 산소의 퓨개시티(fugacity) 환경을 가진 판 내부의 비조산대에서 생성되었을 가능성이 있다.

Keywords

References

  1. Abdel-Rahman, A.M. 1994. Nature of biotites from alkaline, calc-alkaline and peraluminous magmas. Journal of petrology, v.35, p.525-541. https://doi.org/10.1093/petrology/35.2.525
  2. Barbarin, B. 1999. A review of the relationships between granitoid types, their origins and their geodynamic environments. Lithos, v.46, p.605-626. https://doi.org/10.1016/S0024-4937(98)00085-1
  3. Batchelor, R.A. and Bowden, P. 1985. Petrogenetic interpretation of granitoid rock series using multication parameters. Chemical geology, v.48, p.43-55. https://doi.org/10.1016/0009-2541(85)90034-8
  4. Bonin, B. 2007. A-type granites and related rocks, Evolution of a concept, problems and prospects. Lithos, v.97, p.1-29. https://doi.org/10.1016/j.lithos.2006.12.007
  5. Charoy, B. and Raimbault, L. 1994. Zr-, Th-, and REE-rich biotite differentiates in the A-type granite pluton of Suzhou(Eastern China): The key role of fluorine. Journal of petrology, v.35, p.919-962. https://doi.org/10.1093/petrology/35.4.919
  6. Collins, W.J., Beams, S.D., White, A.J.R., et al. 1982. Nature and origin of A-type granites with particular reference to southeastern Australia. Contributions in Mineral Petrology, v.80, p.189-200. https://doi.org/10.1007/BF00374895
  7. Dickin, A.P. 1994. Nd isotope chemistry of Tertiary igneous rocks from Arran, Scotland: Implications for magma evolution and crustal structure. Geological Magazine. v.131, p.329-333. https://doi.org/10.1017/S0016756800011092
  8. Dostal, J., Chatterjee, A.K. 2000. Contrasting behaviour of Nb/Ta and Zr/Hf ratios in a peraluminous granitic pluton(Nova Scotia, Canada). Chemical Geology, v.163, p.207-218. https://doi.org/10.1016/S0009-2541(99)00113-8
  9. Eby, G.N. 1990. The A-type granitoids: A review of their occurrence and chemical characteristics and speculations on their petrogenisis. Lithos, v.26, p.115-134. https://doi.org/10.1016/0024-4937(90)90043-Z
  10. Eby, G.N. 1992. Chemical subdivision of the A-type granitoids: Petrogenetic and tectonic implications. Geology, v.20, p.641-644. https://doi.org/10.1130/0091-7613(1992)020<0641:CSOTAT>2.3.CO;2
  11. Frost, B.R., Barnes, C.G., Collins, W.J., et al. 2001. A geochemical classification for granitic rocks. Journal of petrology, v.42, p.2033-2048. https://doi.org/10.1093/petrology/42.11.2033
  12. Frost, C.D., Frost, B.R., Chamberlain, K.R., et al. 1999. Petrogenesis of the 1.43 Ga Sherman batholith, SE Wyoming, USA: A reduced, rapakivi-type anorogenic granite. Journal of petrology, v.40, p.1771-1802. https://doi.org/10.1093/petroj/40.12.1771
  13. Frost, C.D. and Frost, B.R. 1997. Reduced rapakivi-type granites: The tholeiite connection. Geology, v.25, p.647- 650. https://doi.org/10.1130/0091-7613(1997)025<0647:RRTGTT>2.3.CO;2
  14. Green, T.H. 1995. Significance of Nb/Ta as an indicator of geochemical processes in the crust-mantle system. Chemical Geology, v.120, p.347-359. https://doi.org/10.1016/0009-2541(94)00145-X
  15. Hong, D., Wang, S., Han B. and Jin, M. 1995. The tectonic environment classification and identifying features of the alkali granite. Science China(Series B), v.25, n.4, p.418-426(in Chinese).
  16. Huang, H., Zhang, D., Zhang, Z., Zhang, S., Li, H. and Xue, C. 2010. Petrology and geochemistry of the Chuanwulu alkaline complex in South Tianshan: Constraints on petrogenesis and tectonic setting. Acta Petrologica Sinica, v.26, n.3, p.947-962(in Chinese with English abstract).
  17. Huang, H., Zhang, Z., Zhang, D., Du, H., Ma, L., Kang, J. and Xue, C. 2011. Petrogenesis of Late Carboniferous to Early Permian Granitoid Plutons in the Chinese South Tianshan: Implications for Crustal Accretion. Acta Geologica Sinica, v.85, n.8, p.1305-1333(in Chinese with English abstract).
  18. Jiang, C., Mu, Y., Bai, K., Zhao, X., Zhang, H. and Hei Aizhi. 1999. Chronology, Petrology, geochemistry and tectonic environment of granitoids in the southern Tianshan Mountain, western China. Acta Petrologica Sinica, v.15, n.2, p.298-308(in Chinese).
  19. Katongo, C., Koller, F., Kloetzli, U., et al. 2004. Petrography, geochemistry, and geochronology of granitoid rocks in the Neoproterozoic-Paleozoic Lufilian-Zambezi belt, Zambia: Implications for tectonic setting and regional correlation. Journal of African Earth Science, v.40, p.219-244. https://doi.org/10.1016/j.jafrearsci.2004.12.007
  20. King, P.L., Chappell, B.W., Allen, C.M., et al. 2001. Are Atype granites the high-temperature felsic granites? Evidence from fractionated granites of the Wangrah Suite. Australia Journal of Earth Science, v.48, p.501-514. https://doi.org/10.1046/j.1440-0952.2001.00881.x
  21. King, P.L., White, A.J.R. and Chappell, B.W. 1997. Characterization and origin of aluminous A-type granites of the Lachlan Fold Belt, southeastern Australia. Journal of petrology, v.36, p.371-391.
  22. Li, X., Xiao, W. and Zhou, Z. 2004. $^{40}Ar/^{39}Ar$ age determination on the Late Devonian tectonic event along the southern margin of the South Tianshan Mountains and its significance. Acta Petrologica Sinica, v.20, n.3, p.691-696(in Chinese with English abstract).
  23. Litvinovsky, B.A., Jahn, B.M., Zanvilevich, A.N., et al. 2002. Petrogenesis of syenite-granite suites from the bryansky complex(Transbaikalia, Russia): Implications for the origin of A-type granitoid magmas. Chemical Geology, v.189, p.105-133. https://doi.org/10.1016/S0009-2541(02)00142-0
  24. Litvinovsky, B.A., Steele, I.M. and Wickham, S.M. 2000. Silicic Magma Formation in Overthickened Crust: Melting of Charnockite and Leucogranite at 15, 20 and 25 kbar. Journal of petrology, v.41, p.717-737. https://doi.org/10.1093/petrology/41.5.717
  25. Liu, C., Lei, M., Wu, C., Yin, J., Shao, X. and Yang, H. 2013. Backscattered electron detection and the charactetistics of cathodoluminescence of the minerals in Atype granitoids from Boziguoer, Baicheng County, Xinjiang. Journal of Chinese electron microscopy society, v.32, n.1, p.42-46(in Chinese with English abstract).
  26. Liu, C., Yin, J., Wu, C., Cai, J., Shao, X., Yang, H., Gao, Y., Lei, M., Xu, H. and Wang, J. 2012. Mineralogy and temperature of magma generation for A-type granitoids in Boziguoer, Baicheng County, Xinjiang. Acta Petrologica ET Mineralogica, v.31, n.4, p.589-602(in Chinese with English abstract).
  27. Liu, C., Xu, B., Zou, T., Lu, F., Tong, Y. and Cai, J. 2004. Petrochemistry and tectonic significance of hercynian alkaline rocks along the northern margin of the Tarim platform and its adjacent area. Xin Jiang Geology, v.22, n.1, p.43-49(in Chinese with English abstract).
  28. Loiselle, M.C. and Wones, D.R. 1979. Characteristics and origin of anorogenic granites. Geological Society of America Abstract progress, v.11, p.468.
  29. Maniar, P.D. and Piccoli, P.M. 1989. Tectonic discrimination of granitiods. Geological Society of America Bulletin, v.101, p.635-645. https://doi.org/10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2
  30. Miller, C.F., McDowell, S.M. and Mapes, R.W. 2003. Hot and cold granites? Implications of zircon saturation temperatures and preservation of inheritance. Geology, v.31, p.529-532. https://doi.org/10.1130/0091-7613(2003)031<0529:HACGIO>2.0.CO;2
  31. Montel, J.M. 1993. A model for monazite/melt equilibrium and the application to the generation of granitic magmas. Chemical Geology, v.110, p.127-146. https://doi.org/10.1016/0009-2541(93)90250-M
  32. Nesbitt, H. and Young, G.M. 1982. Early Proterozoic climates and plate motions inferred from major elements chemistry of lutites. Nature, v.299, p.715-717. https://doi.org/10.1038/299715a0
  33. Pearce, J.A., Harris, N.B.W. and Tindle, A.G. 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of petrology, v.25, p.956-983. https://doi.org/10.1093/petrology/25.4.956
  34. Peng, Y. and Yuan, P. 1984. Petrological characteristics and petrogenesis of KuiQi granite, Fujian province. Journal of Nanjing University(Natural Sciences), v.20, n.4, p.740-752(in Chinese with English abstract).
  35. Pitcher, W.S. 1983. Granite type and tectonic environment, Mountain Building Processes. London: Academic Press.
  36. Rickwood, P.C. 1989. Boundary lines within petrologic diagrams which use oxides of mabor and minor elements. Lithos, v.22, p.247-263. https://doi.org/10.1016/0024-4937(89)90028-5
  37. Sun, S.S. and McDonough, W.F. 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geological Society, v.42, p.313-345. https://doi.org/10.1144/GSL.SP.1989.042.01.19
  38. Tang, J., Gu, L., Zhang, Z., Wu, C., San, J., Wang, C., Liu, S. and Zhang, G. 2008. The Cathodoluminescence and REE characteristics of Zircon hydrothermal hyperplasia edge from Gneissic granite, Jianshuiquan. Progress in Natural Science, v.18, n.7, p.769-777(in Chinese). https://doi.org/10.1016/j.pnsc.2008.01.022
  39. Tollo, R.P., Aleinikoff, J.N., Bartholomew, M.J., et al. 2004. Neoproterozoic A-type granitoids of the central and southern Appalachians: intraplate magmatism associated with episodic rifting of the Rodinian supercontinent. Precambrian Research, v.128, p.3-38. https://doi.org/10.1016/j.precamres.2003.08.007
  40. Tong, Y., Wang, T., Hong, D., Han, B., Zhang, J., Shi, X. and Wang, C. 2010. Spatial and temporal distribution of the Carboniferous Permian granitoids in northern Xinjiang and its adjacent areas and its tectonic significance. Acta Petrologica ET Mineralogica, v.29, n.6, p.619-641(in Chinese with English abstract).
  41. Turner, S.P., Foden, J.D. and Morrison, R.S. 1992. Derivation of some A-type magmas by fractionation of basaltic magma: An example from the Pathaway Ridge, South Australia. Lithos, v.28, p.151-179. https://doi.org/10.1016/0024-4937(92)90029-X
  42. Volkert, R.A., Feigenson, M.D., Patino, L.C., et al. 2000. Sr and Nd isotopic compositions age and petrogenesis of A-type granitoids of the Vernon Supersuite, New Jersey Highlands, USA. Lithos, v.50, p.325-347. https://doi.org/10.1016/S0024-4937(99)00065-1
  43. Wang, D., Zhao, G. and Qiu, J. 1995. The tectonic constraint on the late Mesozoic A-type granitoids in eastern china. Geological Journal of Universities, v.1, n.2, p.13- 21(in Chinese with English abstract).
  44. Wang, Q., Zhao, Z. and Xiong, X. 2000. The Ascertainment of Late-Yanshanian A-type Granite in Tongbai-Dabie Orogenic Belt. Acta Petrologica Et Mineralogica, v.19, n.4, p.297-306(in Chinese with English abstract).
  45. Wang, Z., Gong, Q., Sun, X., Wu, F. and Wang, W. 2012. LA-ICP-MS Zircon U-Pb Geochronology of Quartz Porphyry from the Niutougou Gold Deposit in Songxian County, Henan Province. Acta Geologica Sinica( English Edition), v.86, n.2, p.370-382. https://doi.org/10.1111/j.1755-6724.2012.00666.x
  46. Whalen, J.B., Currie, K.L. and Chappell, B.W. 1987. A-type granites: Geochemical characteristics, discrimination and petrogenesis. Contrib Mineral Petrol, v.95, p.407-419. https://doi.org/10.1007/BF00402202
  47. Wones, D.R. and Eugster, H.P. 1965. Stability of biotite experiment, theory, and application. America Mineral, v.50, p.1228-1235.
  48. Wu, C., Gao, Q., Guo, H., Guo, X., Liu, L., Gao, Y., Lei, M., Qing, H. and Chen, Q. 2010. Zircon SHRIMP Dating of intrusive rocks from the Tongguanshan Ore-Field in Tongling, Anhui, China. Acta Geologica sinica, v.84, n.12, p.1746-1758(in Chinese with English abstract).
  49. Xie, L., Wang, R., Chen, X., Qiu, J. and Wang, D. 2005. Th-rich zircon from peralka line A-type granite: Minera- logical features and petrological implications. Chinese Science Bulletin, v.50, n.8, p.809-817.
  50. Xu, B., Yan, G., Zhang, C., Li, Z. and He, Z. 1998. Petrological subdivision and source material of A-type granites. Earth Science Frontiers(China University of Geosciences, Beijing), v.5, n.3, p.113-124(in Chinese with English abstract).
  51. Yang, C. 1984. A brief introduction about A-type granite. Yunnan Geology, v.8, n.2, p.202-204(in Chinese).
  52. Yang, J., Peng, J., Zhao, J., Fu, Y., Yang, C. and Hong, Y. 2012. Petrogenesis of the Xihuashan Granite in Southern Jiangxi Province, South China:Constraints from Zircon U-Pb Geochronology, Geochemistry and Nd Isotopes. Acta Geologica Sinica(English Edition), v.86, n.1, p.131-152. https://doi.org/10.1111/j.1755-6724.2012.00617.x
  53. Yu, S. and Zhang, J. 2010. Provenance and age of gneisses in the Dulan area, North Qaidam UPH metamorphic belt Evidence from zircon U-Pb geochronology, REE and Hf isotopic analyses. Acta Petrologica Sinica, v.26, n.7, p.2083-2098(in Chinese with English abstract).
  54. Zhang, M. 1997. Relationship between intracontinental compressional orogenic belts and intracontinental forel and basins-an example of northern Tarim and southern Tianshan. Geoscience, v.11, n.4, p.461-470(in Chinese with English abstract).
  55. Zhang, Q. 2012. Could granitic magmas experience fractionation and evolution? Acta Petrologica Et Mineralogica, v.31, n.2, p.252-260(in Chinese with English abstract).
  56. Zhao, Z., Wang, Z., Zou, T. and A. Masuda. 1996. Study on petrogenesis of alkali-rich intrusive rocks of ulungur, Xinjiang. Geochimica, v.25, n.3, p.205-220(in Chinese with English abstract).
  57. Zhu, J., Zhang, P., Xie, C., Zhang, H. and Yang, C. 2006. The Huashan-Guposhan A-type Granitoid Belt in the Western Part of the Nanling Mountains: Petrology, Geochemistry and Genetic Interpretations. Acta Geologica Sinica, v.80, n.4, p.529-542(in Chinese with English abstract).
  58. Zou, T. and Li, Q. 2006. Rare and rare earth metallic deposits in Xinjiang, China. Bei jing: Geological Publishing House(in Chinese).
  59. Zou, T., Lu, F., Xu, Y., et al.. 2004. The study on the mineral- forming conditions of the alkaline rock belts and rare earth, gemstone and diamond in the north margin of Tarim. Bei jing: Metallurgical Industry Press(in Chinese).