DOI QR코드

DOI QR Code

Occurrence and Chemical Composition of White Mica from Zhenzigou Pb-Zn Deposit, China

중국 Zhenzigou 연-아연 광상의 백색운모 산상과 화학조성

  • Yoo, Bong Chul (Critical Minerals Research Center, Korea Institute of Geoscience and Mineral Resources)
  • 유봉철 (한국지질자원연구원 희소금속광상연구센터)
  • Received : 2022.05.16
  • Accepted : 2022.06.17
  • Published : 2022.06.30

Abstract

The Zhenzigou Pb-Zn deposit, which is one of the largest Pb-Zn deposit in the northeast of China, is located at the Qingchengzi mineral field in Jiao Liao Ji belt. The geology of this deposit consists of Archean granulite, Paleoproterozoinc migmatitic granite, Paleo-Mesoproterozoic sodic granite, Paleoproterozoic Liaohe group, Mesozoic diorite and Mesozoic monzoritic granite. The Zhenzigou deposit which is a strata bound SEDEX or SEDEX type deposit occurs as layer ore and vein ore in Langzishan formation and Dashiqiao formation of the Paleoproterozoic Liaohe group. White mica from this deposit are occured only in layer ore and are classified four type (Type I : weak alteration (clastic dolomitic marble), Type II : strong alteration (dolomitic clastic rock), Type III : layer ore (dolomitic clastic rock), Type IV : layer ore (clastic dolomitic marble)). Type I white mica in weak alteration zone is associated with dolomite that is formed by dolomitization of hydrothermal metasomatism. Type II white mica in strong alteration zone is associated with dolomite, ankerite, quartz and alteration of K-feldspar by hydrothermal metasomatism. Type III white mica in layer ore is associated with dolomite, ankerite, calcite, quartz and alteration of K-feldspar by hydrothermal metasomatism. And type IV white mica in layer ore is associated with dolomite, quartz and alteration of K-feldspar by hydrothermal metasomatism. The structural formulars of white micas are determined to be (K0.92-0.80Na0.01-0.00Ca0.02-0.01Ba0.00Sr0.01-0.00)0.95-0.83(Al1.72-1.57Mg0.33-0.20Fe0.01-0.00Mn0.00Ti0.02-0.00Cr0.01-0.00V0.00Sb0.02-0.00Ni0.00Co0.02-0.00)1.99-1.90(Si3.40-3.29Al0.71-0.60)4.00O10(OH2.00-1.83F0.17-0.00)2.00, (K1.03-0.84Na0.03-0.00Ca0.08-0.00Ba0.00Sr0.01-0.00)1.08-0.85(Al1.85-1.65Mg0.20-0.06Fe0.10-0.03Mn0.00Ti0.05-0.00Cr0.03-0.00V0.01-0.00Sb0.02-0.00Ni0.00Co0.03-0.00)1.99-1.93(Si3.28-2.99Al1.01-0.72)4.00O10(OH1.96-1.90F0.10-0.04)2.00, (K1.06-0.90Na0.01-0.00Ca0.01-0.00Ba0.00Sr0.02-0.01)1.10-0.93(Al1.93-1.64Mg0.19-0.00Fe0.12-0.01Mn0.00Ti0.01-0.00Cr0.01-0.00V0.00Sb0.00Ni0.00Co0.05-0.01)2.01-1.94(Si3.32-2.96Al1.04-0.68)4.00O10(OH2.00-1.91F0.09-0.00)2.00 and (K0.91-0.83Na0.02-0.01Ca0.02-0.00Ba0.01-0.00Sr0.00)0.93-0.83(Al1.84-1.67Mg0.15-0.08Fe0.07-0.02Mn0.00Ti0.04-0.00Cr0.06-0.00V0.02-0.00Sb0.02-0.01Ni0.00Co0.00)2.00-1.92(Si3.27-3.16Al0.84-0.73)4.00O10(OH1.97-1.88F0.12-0.03)2.00, respectively. It indicated that white mica of from the Zhenzigou deposit has less K, Na and Ca, and more Si than theoretical dioctahedral mica. Compositional variations in white mica from the Zhenzigou deposit are caused by phengitic or Tschermark substitution [(Al3+)VI+(Al3+)IV <-> (Fe2+ or Mg2+)VI+(Si4+)IV] substitution. It means that the Fe in white mica exists as Fe2+ and Fe3+, but mainly as Fe2+. Therefore, white mica from layer ore of the Zhenzigou deposit was formed in the process of remelting and re-precipitation of pre-existed minerals by hydrothermal metasomatism origined metamorphism (greenschist facies) associated with Paleoproterozoic intrusion. And compositional variations in white mica from the Zhenzigou deposit are caused by phengitic or Tschermark substitution [(Al3+)VI+(Al3+)IV <-> (Fe2+ or Mg2+)VI+(Si4+)IV] substitution during hydrothermal metasomatism depending on wallrock type, alteration degree and ore/gangue mineral occurrence frequency.

Zhenzigou 연-아연 광상은 중국 동북지역에선 가장 규모가 큰 연-아연 광상 중의 하나로 지체구조상 Jiao Liao Ji belt내 Qingchengzi mineral field에 위치한다. 이 광상의 주변지질은 시생대의 그래뉼라이트(granulite)와 이를 관입한 고원생대의 미그마타이트질 화강암과 고-중원생대의 소딕(sodic) 화강암을 부정합으로 피복한 고원생대의 Liaohe 층군 및 이들을 관입한 중생대의 섬록암과 몬조나이틱 화강암으로 구성된다. 이 광상은 고원생대의 Liaohe 층군내 Langzishan 층 및 Dashiqiao 층내에서 층상 광체 및 맥상 광체로 산출되며 층준규제 퇴적분기형 또는 퇴적분기형 광상에 해당된다. 이 광상에서 산출되는 백색운모는 층상 광체에서만 산출되며 모암의 종류, 변질 정도, 광석광물의 유무 및 광체 형태에 따라 4 가지 형(I 형 백색운모 : 약변질(쇄설성 돌로마이트질 대리암), II 형 백색운모 : 강변질(돌로마이트질 쇄설성 암석), III 형 백색운모 : 층상광체(돌로마이트질 쇄설성 암석), IV 형 백색운모 : 층상 광체(쇄설성 돌로마이트질 대리암))으로 분류된다. I 형 백색운모는 약 변질정도를 갖는 쇄설성 돌로마이트질 대리암내 돌로마이트를 열수교대작용에 의한 돌로마이트화작용에 의해 형성된 돌로마이트와 함께 산출된다. II 형 백색운모는 강 변질정도를 갖는 돌로마이트질쇄설성 암석내 열수교대작용에 의한 칼리장석의 변질물이나 돌로마이트화작용에 의해 형성된 돌로마이트, 철백운석, 석영과 함께 산출된다. III 형 백색운모는 층상 광체를 갖는 돌로마이트질 쇄설성 암석내 열수교대작용에 의한 칼리장석의 변질물이나 돌로마이트화작용에 의해 형성된 철백운석, 방해석, 석영과 함께 산출된다. IV 형 백색운모는 층상 광체를 갖는 쇄설성 돌로마이트질 대리암내 열수교대작용에 의한 칼리장석의 변질물이나 돌로마이트, 석영과 함께 산출된다. 이들 백색운모의 화학조성은 각각 (K0.92-0.80Na0.01-0.00Ca0.02-0.01Ba0.00Sr0.01-0.00)0.95-0.83(Al1.72-1.57Mg0.33-0.20Fe0.01-0.00Mn0.00Ti0.02-0.00Cr0.01-0.00V0.00Sb0.02-0.00Ni0.00Co0.02-0.00)1.99-1.90(Si3.40-3.29Al0.71-0.60)4.00O10(OH2.00-1.83F0.17-0.00)2.00, (K1.03-0.84Na0.03-0.00Ca0.08-0.00Ba0.00Sr0.01-0.00)1.08-0.85(Al1.85-1.65Mg0.20-0.06Fe0.10-0.03Mn0.00Ti0.05-0.00Cr0.03-0.00V0.01-0.00Sb0.02-0.00Ni0.00Co0.03-0.00)1.99-1.93(Si3.28-2.99Al1.01-0.72)4.00O10(OH1.96-1.90F0.10-0.04)2.00, (K1.06-0.90Na0.01-0.00Ca0.01-0.00Ba0.00Sr0.02-0.01)1.10-0.93(Al1.93-1.64Mg0.19-0.00Fe0.12-0.01Mn0.00Ti0.01-0.00Cr0.01-0.00V0.00Sb0.00Ni0.00Co0.05-0.01)2.01-1.94(Si3.32-2.96Al1.04-0.68)4.00O10(OH2.00-1.91F0.09-0.00)2.00 및 (K0.91-0.83Na0.02-0.01Ca0.02-0.00Ba0.01-0.00Sr0.00)0.93-0.83(Al1.84-1.67Mg0.15-0.08Fe0.07-0.02Mn0.00Ti0.04-0.00Cr0.06-0.00V0.02-0.00Sb0.02-0.01Ni0.00Co0.00)2.00-1.92(Si3.27-3.16Al0.84-0.73)4.00O10(OH1.97-1.88F0.12-0.03)2.00 로써 이론적인 이중팔면체형 운모류 값보다 Si가 높고 K, Na, Ca는 낮으며 모두 백운모에 해당된다. 특히, Zhenzigou 연-아연 광상에서 산출되는 백색운모의 화학조성 변화는 팬자이틱 또는 Tschermark 치환[(Al3+)VI+(Al3+)IV <-> (Fe2+ 또는 Mg2+)VI+(Si4+)IV] 메카니즘에 의해 일어났으며 백색운모의 Fe는 Fe2+와 Fe3+ 로써 존재하지만 주로 Fe2+ 우세함을 의미한다. 따라서 Zhenzigou 연-아연 광상의 층상 광체에서 산출되는 백색운모들은 고원생대의 화성활동 및 녹색편암상의 변성작용에 의한 열수교대작용으로 기존에 산출되었던 광물들의 재용융 및 재침전 과정에서 형성되었으며 이들 백색운모의 화학조성 변화는 열수교대작용 동안 모암인 돌로마이트 및 쇄설성 암석의 함량 차이, 변질 정도 및 광석광물의 유무에 따른 팬자이틱 또는 Tschermark 치환[(Al3+)VI+(Al3+)IV <-> (Fe2+ 또는 Mg2+)VI+(Si4+)IV] 메카니즘에 의해 일어났음을 알 수 있다.

Keywords

Acknowledgement

이 연구는 2020년 정부(과학기술정보통신부)의 재원으로 국가과학기술연구회 융합연구단 사업(No. CRC-15-06-KIGAM) 또는 한국지질자원연구원 융합사업인 "북한 광물자원 탐사기술 실증 및 잠재성 평가(19-8901, 20-8901)" 및 한국지질자원연구원 기본 사업인 "국내 바나듐(V) 등 에너지 저장광물 정밀탐사기술 개발 및 부존량 예측(22-3211-1) 과제 지원을 받아 수행되었으며 이에 사의를 표한다. 바쁘신 와중에도 이 논문의 미비점을 지적, 수정하여 주신 편집 위원장님과 두분의 심사위원님께 깊이 감사드립니다.

References

  1. Chen, J.F., Yu, G., Xue, C.J., Qian, H., He, J.F., Xing, Z. and Zhang, X., 2005, Pb isotope geochemistry of lead, zinc, gold and silver deposit clustered region, Liaodong rift zone, northeastern China. Science in China, 48, 467-476.
  2. Cohen, J.F., 2011, Compositional Variations in Hydrothermal White Mica and Chlorite from Wall-Rock Alteration at the Ann-Mason Porphyry Copper Deposit, Nevada. Master thesis, Oregon State University, Oregon, USA, 121p.
  3. Deer, W.A., Howie, R.A. and Zussman, J., 2003, Rock-forming minerals, sheet silicates: Micas, 2, 308p.
  4. Deng, G.Q., 1983, Types and main ore controlling factors of the Liaohe group in the middle of Liaodong. Liaoning Acta Geologica Sinica, 1, 53-70 (in Chinese)
  5. Duan, X.X., Zeng, Q.D., Wang, Y.B., Zhou, L.L. and Chen, B., 2017, Genesis of the Pb-Zn deposits of the Qingchengzi ore field, eastern Liaoning, China: Constraints from carbonate LA-ICPMS trace element analysis and C-O-S-Pb isotopes. Ore Geology Reviews, 89, 752-771. https://doi.org/10.1016/j.oregeorev.2017.07.012
  6. Jiang, S.Y. and Wei, J.Y., 1989, Geochemistry of the Qingchengzi lead-zinc deposit. Mineral Deposits, 8, 20-28 (in Chinese with English abstract).
  7. Li, J.A., Cai, W.Y., Wang, K.Y., Liu, H.I., Konare, Y., Qian, Y., Lee, G.J. and Yoo, B.C., 2019, Paleoproterozoic SEDEX-type stratiform mineralization overprinted by Mesozoic vein-type mineralization in the Qingchenzi Pb-Zn deposit, Northeastern China. Journal of Asian Earth Sciences, 184, 104009. https://doi.org/10.1016/j.jseaes.2019.104009
  8. Li, D.D., Wang, Y.W., Wang, J.B., Lai, C.K., Qiu, J.Z., Wang, W, Li, S.H. and Zhang, Z.C., 2021, Iron isotopes as an ore-fluid tracer: Case study of Qingchengzi PbZn-Au(-Ag) orefield in Liaoning, NE China. Resource Geology.
  9. Li, S.Z., Zhao, G.C., Sun, M., Han, Z.Z., Luo, Y., Hao, D.F. and Xia, X.P., 2005, Deformation history of the Paleoproterozoic Liaohe assemblage in the Eastern Block of the North China Craton. Journal of Asian Earth Sciences, 24, 659-674. https://doi.org/10.1016/j.jseaes.2003.11.008
  10. Liu, G.P., 1999, Isospatial metallogenesis in Qingchengzi ore filed, Liaoning, Geological Exploration for Non-ferrous Metals, 8, 277-282 (in Chinese with English abstract).
  11. Ma, Y.B., Xing, S.W., Zhang, Z.J., Wang, Y. and Zhang, Y., 2014, Rb-Sr isotopic age of sphalerites from Qingchengzi stratiform Pb-Zn ores and its implication for the ore forming process. Acta Geologica Sinica, 88, 996-998. https://doi.org/10.1111/1755-6724.12378_17
  12. Ma, Y.B., Bagas, L., Xing, S.W., Zhang, S.T., Wang, R.J., Li, N., Zhang, Z.J., Zou, Y.F., Yang, X.Q., Wang, Y. and Zhang, Y., 2016, Genesis of the stratiform Zhenzigou Pb-Zn deposit in the North China Craton: Rb-Sr and C-O-S-Pb isotope constraints. Ore Geology Reviews, 79, 88-104. https://doi.org/10.1016/j.oregeorev.2016.05.009
  13. Rieder, M., Cavazzini, G., D'Yakonov, Y.S., Frank-Kamenetskii, V.A., Gottardi, G., Guggenhein, S., Koval, P.V., Muller, G., Neiva, A.M.R., Radoslovich, E.W., Robert, J., Sassi, F.P., Takeda, H., Weiss, Z. and Wones, D.R., 1999, Nomenclature of the micas. Mineralogical Magazine, 63, 267-279. https://doi.org/10.1180/002646199548385
  14. Song, Y.H., Yang, F.C., Yan, G.L., Wei, M.H. and Shi, S.S., 2017, Characteristics of mineralization fluids and tracers of mineralization material sources of the Qingchengzi lead-zinc deposit in Liaoning Province. Geology and Exploration, 53, 259-269 (in Chinese with English abstract).
  15. Tappert, M.C., Rivard, B., Giles, D., Tappert, R. and Mauger, A., 2013, The mineral chemistry, near-infrared, and mid-infrared reflectance spectroscopy of phengite from the Olympic Dam IOCG deposit, South Australia. Ore Geology Reviews, 53, 26-38. https://doi.org/10.1016/j.oregeorev.2012.12.006
  16. Tischendorf, G., Gottesmann, B., Forster, H.J. and Trumbull, R.B., 1997, On Li-bearing micas: estimating Li from electron microprobe analyses and an improved diagram for graphical representation. Mineralogical Magazine, 61, 809-834. https://doi.org/10.1180/minmag.1997.061.409.05
  17. Wang, Y.C., Wang, K.Y., Zhang, S., Liang, Y.H., Li, J.F., Fu, L.J. and Wang, Z.G., 2015, Characteristics of hydrothermal superposition mineralization and fluid origins of the Xiaotongjiapuzi gold deposit in Liaoning Province, Geology and Exploration, 51, 79-87 (in Chinese with English abstract).
  18. Yoo, B.C., 2019, White mica and chemical composition of Samdeok Mo deposit, Republic of Korea. Journal of the Mineralogical Society of Korea, 32, 223-234. https://doi.org/10.9727/jmsk.2019.32.3.223
  19. Yoo, B.C., 2020, Occurrence and chemical composition of white mica and ankerite from laminated quartz vein of Samgwang Au-Ag deposit, Republic of Korea. Korean Journal of Mineralogy and Petrology, 33, 53-64. https://doi.org/10.22807/KJMP.2020.33.1.53
  20. Yoo, B.C., 2021a, Occurrence and chemical composition of white mica and chlorite from laminated quartz vein of Unsan Au deposit. Korean Journal of Mineralogy and Petrology, 34, 1-14. https://doi.org/10.22807/KJMP.2021.34.1.1
  21. Yoo, B.C., 2021b, Occurrence and chemical composition of dolomite from Zhenzigou Pb-Zn deposit, China. Korean Journal of Mineralogy and Petrology, 34, 177-191. https://doi.org/10.22807/KJMP.2021.34.3.177
  22. Yu, G., Chen, J.F., Xue, C.J., Chen, Y.C., Chen, F.K. and Du, X.Y., 2009, Geochronological framework and Pb, Sr isotope geochemistry of the Qingchengzi Pb-Zn-Ag-Au orefield, Northeastern China. Ore Geology Reviews, 35, 367-382. https://doi.org/10.1016/j.oregeorev.2008.11.009
  23. Zhang, C.Q., Liu, H.A., Wang, D.H., Chen, Y.C., Rui, Z.Y., Lou, D.B., Wu, Y., Jia, F.D., Chen, Z.H. and Meng X.Y., 2015, A preliminary review on the metallogeny of Pb-Zn deposits in China. Acta Geologica Sinica, 89, 1333-1358. https://doi.org/10.1111/1755-6724.12532
  24. Zhou, L.L., Zeng, Q.D., Liu, J.M., Duan, X.X., Sun, G.T., Wang, Y.B. and Chen, P.W., 2020, Tracing mineralization history from the compositional textures of sulfide association: A case study of the Zhenzigou stratiform Zn-Pb deposit, NE China. Ore Geology Reviews,126, 103792. https://doi.org/10.1016/j.oregeorev.2020.103792