• Title/Summary/Keyword: chemical activations

Search Result 11, Processing Time 0.027 seconds

Electrochemical characterization of supercapacitors based on carbons derived from Sorona activated by ZnCl2

  • Jisha, M.R.;Christy, Maria;Kim, Ae Rhan;Nahm, Kee Suk;Yoo, Dong Jin
    • Journal of Energy Engineering
    • /
    • v.21 no.3
    • /
    • pp.309-314
    • /
    • 2012
  • Carbons derived by the pyrolysis of Sorona activated by $ZnCl_2$ in the ratio of 1:20 and non-porogen Sorona carbons are used as the electrode materials in asymmetric electrochemical supercapacitors and electrochemical behavior is investigated. Scanning electron microscopy (SEM) reveals the porogen free carbons show a flake-like structure and the $ZnCl_2$-treated Sorona carbons have a loose, disjoint structure without any particular shape. Cyclic voltammetric (CV) studies show specific prolate rectangular shape and gives good capacitive properties.

Inhibitory Effects of Saururus Chinensis Extracts on Osteoclast Differentiation

  • Shim, Ki-Shuk;Kim, Soon-Nam;Kim, Myung-Hee;Kim, Young-Sup;Ryu, Shi-Yong;Min, Yong-Ki;Kim, Seong-Hwan
    • Natural Product Sciences
    • /
    • v.14 no.2
    • /
    • pp.113-117
    • /
    • 2008
  • Saururus chinensis is a commonly used folk herb for the treatment of edema and liver diseases in Korea. To study the biological activity of Saururus chinensis in bone metabolism, we evaluated the effect of its extracts on osteoclast differentiation in vitro using primary mouse bone marrow-derived macrophages. Methanol extract (ME) from dried roots of Saururus chinensis was partitioned into methylene chloride (MF), ethyl acetate (EF), n-butanol (BF) and water fractions (WF). Tartrate-resistance acid phosphatase (TRAP) activity assay and western blot analysis were performed to determine the effect on osteoclast differentiation and mitogen-activated protein (MAP) kinases activation. ME, MF and EF dramatically inhibited receptor activator of ${NF-kB}$ ligand (RANKL)-induced formation of multinucleated osteoclasts and activation of MAP kinases. This study firstly demonstrated that ME, MF and EF of Saururus chinensis have the potential to inhibit the osteoclast differentiation, which results from the inhibition of MAP kinases activations in part.

Steam Activation Behaviors of Oxidatively Stabilized Petroleum-based Pitch Fibers Spun by Melt-blown Method

  • Kim, Chan;Kim, Young-Min;Yang, Kap-Seung
    • Carbon letters
    • /
    • v.3 no.2
    • /
    • pp.93-98
    • /
    • 2002
  • Short pitch fibers were prepared from petroleum based isotropic precursor pitch by melt-blown technology. The pitch fibers were stabilized in oxidizing condition, followed by steam activations at various conditions. The fiber surface and pore structures of the activated carbon fibers (ACFs) were respectively characterized by using SEM and applying BET theory from nitrogen adsorption at 77 K. The weight loss of the oxidized fiber was proportional to activation temperature and activation time, independently. The adsorption isotherms of the nitrogen on the ACFs were constructed and analyzed to be as Type I consisting of micropores mainly. The specific surface area of the ACFs proportionally increased with the weight loss at a given activation temperature. The specific surface area was ranged 850~1900 $m^2/g$ with pores of narrow distribution in sizes. The average pore size was ranged 5.8~14.1 ${\AA}$ with the larger value from the more severe activation condition.

  • PDF

Sequential Loop Closing Identification of Hammerstein Models for Multiple-Input Multiple-Output Processes (다변수 Hammerstein 공정의 순차 확인법)

  • Park Ho Cheol;Koo Doe Gyoon;Lee Moon Yong;Lee Jietae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.12
    • /
    • pp.1280-1286
    • /
    • 2004
  • A lot of industrial chemical processes contain certain input nonlinearities even though they are controlled by several linear controllers. Here we investigate a sequential loop closing identification method for MIMO Hammerstein nonlinear processes with diagonal nonlinearities. The proposed method separates the identification of the nonlinear static function from that of the linear subsystem by using a relay feedback test and a triangular type signal test. From 2 n activations for n n MIMO nonlinear processes, we sequentially identify the whole range of the nonlinear static function as well as the transfer function matrix of the linear subsystem.

Syntheses of Amide Bonds and Activations of N-C(sp3) Bonds

  • Hong, Jang-Hwan
    • Journal of Integrative Natural Science
    • /
    • v.10 no.4
    • /
    • pp.175-191
    • /
    • 2017
  • In organic chemistry amide synthesis is performed through condensation of a carboxylic acid and an amine with releasing one equivalent of water via the corresponding ammonium carboxylate salt. This method is suffering from tedious processes and poor atom-economy due to the adverse thermodynamics of the equilibrium and the high activation barrier for direct coupling of a carboxylic acid and an amine. Most of the chemical approaches to amides formations have been therefore being developed, they are mainly focused on secondary amides. Direct carbonylations of tertiary amines to amides have been an exotic field unresolved, in particular direct carbonylation of trimethylamine in lack of commercial need has been attracted much interests due to the versatile product of N,N-dimethylacetamide in chemical industries and the activation of robust N-C($sp^3$) bond in tertiary amine academically. This review is focused mainly on carbonylation of trimethylamine as one of the typical tertiary amines by transition metals of cobalt, rhodium, platinum, and palladium including the role of methyl iodide as a promoter, the intermediate formation of acyl iodide, the coordination ability of trimethylamine to transition metal catalysts, and any possibility of CO insertion into the bond of Me-N in trimethylamine. In addition reactions of acyl halides as an activated form of acetic acid with amines are reviewed in brief since acyl iodide is suggested as a critical intermediate in those carbonylations of trimethylamine.

The Displacement Current of Optically - stimulatred Monolayers on the Water Surface (수면상 단분자막의 광자격에 의한 변위전류)

  • Bae, Myong-Han;Kim, Hyeoung-Woo;Cho, Wan-Je;Song, Kyong-Ho;Park, Keun-Ho;Kwun, Young-Su;Park, Tae-Gone
    • Proceedings of the KIEE Conference
    • /
    • 1999.07d
    • /
    • pp.1971-1973
    • /
    • 1999
  • Monolayers of azo-benzene group containing fatty acids(8A5H) were made by spreading and compressing on the water surface. These monolayers were optically stimulated by illuminating the lights of 365[nm] and 450[nm] from X-non lamp, and the structural changes of the molecules were measured by the displacement current method. Also, the dynamic behaviors of these monolayers were measured by the $\pi-A$ isotherms when changing the temperatures of the water surface. As results, when the monolayers were stimulated by 365[nm] light, the positive currents which were generated by the structural changes from trans to cis were measured. But the negative currents of the structural changes from cis to trans were too weak to detect. When the temperatures of the water surface were increased, surface pressures of the monolayers increased early because of the thermal activations of the molecules, and the double liquid film phase were disappeared upon $40[^{\circ}C]$.

  • PDF

Development of Mg-xFe2O3-yNi Hydrogen-Storage Alloys by Reactive Mechanical Grinding

  • Song, Myoung Youp;Kwon, Sung Nam;Park, Hye Ryoung
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.10
    • /
    • pp.769-774
    • /
    • 2012
  • Mg-x wt% $Fe_2O_3-y$ wt% Ni samples were prepared by reactive mechanical grinding in a planetary ball mill, and their hydrogen-storage properties were investigated and compared. Activations of $Mg-5Fe_2O_3-5Ni$ was completed after one hydriding (under 12 bar $H_2$) - dehydriding (in vacuum) cycle at 593 K. At n = 2, $Mg-5Fe_2O_3-5Ni$ absorbed 3.43 wt% H for 5 min, 3.57 wt% H for 10 min, 3.76 wt% H for 20 min, and 3.98 wt% H for 60 min. Activated $Mg-10Fe_2O_3$ had the highest hydriding rate, absorbing 2.99 wt% H for 2.5 min, 4.86 wt% H for 10 min, and 5.54 wt% H for 60 min at 593 K under 12 bar $H_2$. Activated $Mg-10Fe_2O_3-5Ni$ had the highest dehydriding rate, desorbing 1.31 wt% H for 10 min, 2.91 wt% H for 30 min, and 3.83 wt% H for 60 min at 593 K under 1.0 bar $H_2$.

Influence of Activation Temperature on Electrochemical Performances of Styrene-Acrylonitrile Based Porous Carbons (Styrene-Acrylonitrile 기반 다공성 탄소의 전기화학적 특성에 활성화 온도가 미치는 영향)

  • Lee, Ji-Han;Heo, Gun-Young;Park, Soo-Jin
    • Polymer(Korea)
    • /
    • v.36 no.6
    • /
    • pp.739-744
    • /
    • 2012
  • In this work, we prepared the carbons from synthesized styrene-acrylonitrile carbon precursor. The prepared carbons were chemically activated, and then the activated SAN-based carbons were named as A-SANs. The activations were carried out at different temperatures to investigate the effect of activation temperature on the surface and electrochemical properties of the activated SAN-based carbons for using as an electrode of electric double layer capacitors (EDLC). The characteristics of A-SAN were determined by X-ray diffraction (XRD), scanning electron microscopy (SEM), surface area and pore size analysis. Also, the electrochemical behaviors were observed by cyclic voltammetry and galvanostatic charge-discharge method. From the results, the A-SAN 700 showed excellent electrochemical property and the highest specific capacitance, but these properties decreased when the activation temperature was above $700^{\circ}C$. This is due to the fact that the activation at a temperature over $700^{\circ}C$ causes deformation of micropore structures.

Bactericidal and wound disinfection efficacy of nanostructured titania

  • Azad, Abdul-Majeed;Aboelzahab, Asem;Goel, Vijay
    • Advances in materials Research
    • /
    • v.1 no.4
    • /
    • pp.311-347
    • /
    • 2012
  • Infections are caused due to the infiltration of tissue or organ space by infectious bacterial agents, among which Staphylococcus aureus bacteria are clinically most relevant. While current treatment modalities are in general quite effective, several bacterial strains exhibit high resistance to them, leading to complications and additional surgeries, thereby increasing the patient morbidity rates. Titanium dioxide is a celebrated photoactive material and has been utilized extensively in antibacterial functions, making it a leading infection mitigating agent. In view of the property amelioration in materials via nanofication, free-standing titania nanofibers (pure and nominally doped) and nanocoatings (on Ti and Ti6Al4V implants) were fabricated and evaluated to assess their efficacy to mitigate the viability and growth of S. aureus upon brief (30 s) activation by a portable hand-held infrared laser. In order to gauge the effect of exposure and its correlation with the antibacterial activities, both isolated (only titania substrate) and simultaneous (substrate submerged in the bacterial suspension) activations were performed. The bactericidal efficacy of the IR-activated $TiO_2$ nanocoatings was also tested against E. coli biofilms. Toxicity study was conducted to assess any potential harm to the tissue cells in the presence of photoactivated materials. These investigations showed that the photoactivated titania nanofibers caused greater than 97% bacterial necrosis of S. aureus. In the case of titania-coated Ti-implant surrogates, the bactericidal efficacy exceeded 90% in the case of pre-activation and was 100% in the case of simultaneous-activation. In addition to their high bactericidal efficacy against S. aureus, the benignity of titania nanofibers and nanocoatings towards tissue cells during in-vivo exposure was also demonstrated, making them safe for use in implant devices.

Inhibition of Osteoclast Differentiation by Wheat Bran Butanol Fraction (밀기울 부탄올 분획물이 파골세포의 분화억제에 미치는 효과)

  • Moon, Jung Sun;Moon, Seung-Hee;Shim, Bo Won;Kang, Tae Jin;Lee, Sookyeon;Yim, Dongsool
    • Korean Journal of Pharmacognosy
    • /
    • v.44 no.3
    • /
    • pp.257-262
    • /
    • 2013
  • Osteoporosis is a disease of bones that leads to an increased risk of fracture. In osteoporosis, the bone mineral density is reduced, bone microarchitecture deteriorates, and the amount and variety of proteins in bone are altered. $It^{\circ}{\emptyset}s$ caused by the imbalance between born resorption and born formation. Recently natural products from plants have been extensively studied as therapeutic drugs to treat and prevent various diseases. Wheat bran is the hard outer layers of wheat grain and produced as a by-product of milling in the production of refined grains. In oriental medicines, Bu So Maek (Tritici Immaturi Semen) with wheat bran has been used as bronchitis, sedatives and anti-sweating effects. However effects of wheat bran butanol fraction (WBB, 50 ${\mu}g/ml$) in osteoclast differentiation remains unknown yet. Thus we investigated the effects of WBB on RANKL induced osteoclast differentiation. WBB inhibited osteoclast differentiation by downregulating the RANKL-induced activations of MAP kinases. Moreover mRNA expression of osteoclast-mediating molecules such as c-Fos, NFATc1 and DC-STAMP were attenuated by WBB during osteoclast differentiation. The finding of this study show that WBB and its components might prevent osteoclast-related bone loss.