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Sequential Loop Closing Identification of Hammerstein Models
for Multiple-Input Multiple-Output Processes

WS H FEAOXE, O 2 &
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Abstract : A lot of industrial chemical processes contain certain input nonlinearities even though they are controlled by several
linear controllers. Here we investigate a sequential loop closing identification method for MIMO Hammerstein nonlinear processes
with diagonal nonlinearities. The proposed method separates the identification of the nonlinear static function from that of the linear
subsystem by using a relay feedback test and a triangular type signal test. From 2[_n activations for n[Tn MIMO nonlinear processes,
we sequentially identify the whole range of the nonlinear static function as well as the transfer function matrix of the linear

subsystem.
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I. Introduction

Designing control systems of multivariable processes is still a
challenge to the control engineers due to their complex interactive
natures. Many control schemes for interacting multivariable processes
are available. Though full multivariable control systems such as a
model predictive control system provide good control performances,
multi-loop control systems are often used in the chemical processes
because of their simplicity and robustness.

The frequency response method can be used to identify parameters
of several linear industrial processes. Astrém and Higglund[1]
identified ultimate information from a relay feedback test to tune the
PID controller automatically. Also, Shen et al[2] suggested an
asymmetric biased relay feedback method to estimate steady state
gain and ultimate information. Their idea has been applied in many
areas. The sequential loop closing (SLC) method is one of the well-
known methods to tune multi-loop control systems for the Multiple-
input Multiple-output (MIMO) processes. In the SLC method, each
controller is designed sequentially from the dynamics of each pair of
inputs and outputs while the former controllers are closed. The
dynamics of the latter pair of inputs and outputs can be changed
considerably when the former loops are closed. Hence, the control
performance can be very sensitive to which loop is tuned first and
how it is designed. To avoid this drawback of SL.C method, Shen and
Yu[3] suggested several iterations with a conservative Zigler-Nichos
tuning method.

Field tests for tuning of control systems are the most time-
consurning step. Hence, it is desirable to reduce the number of field
tests. For this, Choi et al.{4] proposed the sequential loop closing
identification method to identify the whole transfer function. Also,
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Koo et al[5] suggest a sequential loop closing identification method
for multi-loop control system using an asymmetric biased relay
feedback test. The identified models can be used to correct pairings for
multi-loop control systems, and to improve the tuning performance
without field iterations.

Linear models have inherent limitations in describing the nonlinear
dynamics of industrial chemical processes. For better model
performance, many authors have exerted much of their efforts in
developing nonlinear system identification methods. One of the
nonlinear black box models is the particular type model composed of
linear dynamic subsystem and memoryless nonlinear static function
such as Wiener, Hammerstein, Hammerstein-Wiener, and so on[6].

Pottmann et al.[7] suggested an identification method based on a
multi-model approach and Kolmogorov-Gabor polynomials. Huang
et al.[8] suggested the classification method for several nonlinear
processes using two relay feedback tests. Sung[9] proposed a new
estimation method for nonlinear static element using random binary
signal to deactivate effects of the nonlinear elements, Park et al.[10]
identify the nonlinear static function of the Hammerstein nonlinear
process by using a pair of relay feedback test and triangular type test
signal test.

Among various type nonlinear models, we consider MIMO
Hammerstein nonlinear processes with diagonal nonlinearity. If a
nonlinear static element precedes a linear dynamic system, the model
is called a Hammerstein-type nonlinear process as shown in Figure 1.
In this research, we propose a sequential loop closing identification
method for MIMO Hammerstein nonlinear processes. The proposed
method separates the identification of the nonlinear static function
from that of the linear subsystem by using a biased relay feedback
method. By 27In activations of the processes, we sequentially identify
the whole range of the nonlinear static function matrix as well as the
transfer function matrix of the linear subsystem, separately.

t t inear Dynamic t
u(t) FeaD) v(t) y(t)

Fig. 1. MIMO Hammerstein nonlinear process.
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II. MIMO(Multiple-Input Multiple-Output)
Hammerstein Nonlinear Processes
Consider a following block-oriented MIMO Hammerstein
nonlinear process as shown in Figure 1. It can be represented by

u® =[w®) u® - u®f

(1
v(t) =Fu(®) =[f, (u; (1) frus(t) - fyug ()]
g11(s) - g1,(s)
G(s)= ’ :
gnl(s) > Zm (S) (2)
2= Yi(s) _ Kij exp(-05s)

V_] (s) (‘EijS+l)

Where, uy(t), v{t) and yi(t) denote the process input, the output of the
nonlinear function and the process output, respectively. G(s) is a stable
transfer function matrix with several linear dynamic subsystems. Also
fi(*) means a nonlinear static function to be continuous and monotorne.
The main issue of this research is to estimate each elements of the
nonlinear static function matrix and to identify each transfer function
of the linear dynamic subsystem matrix.

1. Identification of SIMO (Single-Input Multiple-Output)
Hammerstein Nonlinear Processes

To identify sequentially an n x n Hammerstein nonlinear process,
an identification of a SIMO Hammerstein nonlinear process is
required in Figure 2. Here, we suggest a two-step approach for SIMO
process. In the first test, a biased relay feedback method is applied to
activate the process to estimate the frequency responses of the linear
dynamic subsystem. Subsequently, a triangular test input activates the
process to identify the nonlinear static function.

(®)

Fig, 2. SIMO hammerstein nonlinear process: (a) relay feedback test,
(b) triangular test input activation.

1. Biased relay feedback and Frequency Responses of
Linear Dynamic Subsystem
Consider the biased relay feedback experiment of Figure 2(a). We
need to notice that the output of the relay is a binary signal and so is
the output of the nonlinear static function of which period is still same
while the mean value and the oscillation magnitude are changed. So,
the following linear equation is valid between the two binary signals.

v =oau, () +p 3)

where, o and [} are constants. u,;(t) and v;(t) represent the relay output
and the comesponding output of the nonlinear static finction,
respectively. Keeping this telationship in mind, let’s consider the
following transfer function for nonzero frequencies.

t+P, .
tYr,i (t) EXP(_kart)dt

t+P,
J‘ur,l (t)exp(—jko, t)dt
1

gii(kjo,) = for k=1,2,3, (4

where, 0~27/P; and P, represent the relay frequency and the relay
period, respectively. y;(t) and g (ko) for i=1, 2, 3, ..., n are the i-th
activated process output by the relay feedback and the frequency
responses of the process, respectively. It should be noted that the bias
term of B does not affect the estimates of g;(jkw,). Therefore, the
transfer function of (4) can be rewritten with respect to the transfer
function of the linear dynamic subsystem as follows.

t+P,
o yriexp(-jko, i
g (o) ==
[Ver®expt- o,
t

=g, (jkoy)  (5)

fork=1,2,3,...
where, g,1(s) is the transfer function of the linear dynamic subsystem
in Figure 2. Finally, we can assume that the transfer function of the
linear dynamic subsystem is g;(s) without loss of generality because
we have one degree of freedom to replace the static nonlinearity fi(*)
by fi(*)=fi(*)/a not to change the process input-output relationship.
Now, it is clear that frequency responses of the linear dynamic
subsystem at the frequencies jkay, k=1, 2, 3, ... can be estimated by
(4) from the relay output and the corresponding process output.
2. ldentification of Nonlinear Static Function and
Linear dynamic Subsystem

We estimated all frequency responses of the linear dynamic
subsystem corresponding to the multiples of the relay frequency. In
this section, we estimate the whole activated region of the nonlinear
static function using a triangular periodic test signal of which period is
the same as that of the relay output. Figure 2(b) shows the triangular
test input activation. Here, the process output can be described as the
following Fourier series expansion.

0

¥si()=Ap+ Z(Ak cos(km, t)+ By sin(ku)rt)) ©)
k=1
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where, ysi(t) denotes the i-th activated process output by the
triangular signal.

To identify the nonlinear static function, we will reconstruct v,(t)
from y; (). Consider the following transfer function representation of
the process.

Ve (=818 Yy 18 =¥ ()Y, () (10)

where, g(s)'=¥y(s). Vai(®) and ys,(t) are the output of the
nonlinear static function and the first process output for the triangular-
type signal. From (6) and (10), we have

V51 (D) = A1 (0)+2(1) (11

0
21(0= ) A% (Kjo,sin(ko,t + L%, (Kjo, )
k=1
o (12)
+ D By ¥ (njo,)cos(no -+ ¥ (njo, )
k=1

where, gi(jka,) is estimated by (4). The coefficients of Ay, B, are
calculated from (8) and (9) with numerical integration of the process
output. Then, we can obtain a data set of ug,(t) versus z(t) from (12).
Since u(t), v(t) and y(t) can be assumed to be deviation variables, we
have f(0)=0. Therefore, we can set Ag¥,;(0) in equation (11) be the
value of z)(t) corresponding to ug;(t)=0. The nonlinear static function
is identified from a data set of the calculated vy (t) and ug;(t). If an
inverse polynomial model of the nonlinear function is needed, we can
analytically solve the following optimization problem using the least
squares method.

N
omin ) (ug ()~ ()] (3)
815825 "58n i=1
subject to
(6 =8 Vi (D +&ov, 2 (O ++ &, v (D) (14

After an identification of the nonlinear static function, we can
obtain v,,(t) from the obtained nonlinear function and uy(t). The first
order plus time delay (FOPTD) model of g;(s) can be estimated as
follows.

Mo - S8 - AIABEE =2X M 10 &, W 12 & 2004. 12

K, i1exp(-0, ;1(s))
15+1 (15

gi(s)=
Tp,i

+P, +P,
where, K o =g (0)= fyr,i(t)dt/er,l(t)dta

\/(Kp,il/lgil(jmr)DZ -1

®r

p,il =
and

0,11 =(—tan"' (1, o) — Zg;; (j0,))/ 0, +2x1/ 0,

=(-tan™" (1, 10,) — £gi1 (j0,))/ @, + &P,

where, g;(jo,) is calculated by using (4). The phase of gjoy) is a
multi-valued function and hence the equation for the time delay has
the term of kP,. When time delay is smaller than the oscillation period,
1=0. Otherwise,  is the integer part of 6,y/P.. Expetimentally, it can
be found from the initial response of relay oscillation.

V. Sequential Loop Closing Identification of MIMO
Hammerstein Nonlinear Processes

In the sequential loop closing (SLC) method, since each controller
is tuned sequentially by the ultimate information between the paired
input and output, process models are not required. However, in the
proposed identification method, we identify the transfer function
matrix as well as the nonlinear static function. Each controller contains
the inverse of the nonlinear static function and conventional PI
controller tuned by the identified model. For nx n Hammerstein
nonlinear processes, only 2 x n perturbations will be performed.
1. First Activations and Feedback loop

The first activations are put to the first input u;(t) while other loops
are open, as shown in figure 2. From these two activations, we can
estimate fi(*) and g;(s) for =1, 2, 3, ..., n. Then, the first feedback
controller including g;;(s) of PI controller and f;'(+) can be designed
as shown in Figure 3. Where, ri(t) denotes the i-th set point and g.(s) is
tuned by g;(s).
2. (m¥1)-th loop Activation(former m-loops are closed)

It is very simple to expand the above SIMO identification method
to nxn processes. First, we identify g;(s) and fi(*) from the first
activations. Thereafter, the first loop is closed. Then, we assume that
the first nonlinear function is completely removed. When the first loop
is closed and ry(t) and other inputs except u,(t) are equal to zero, the
MIMO Hammerstein nonlinear process can be treated as SIMO
Hammerstein nonlinear process of which input is uy(t). Then, we have
a following SIMO process.

h gtl(s)

1

1 >
u,....u, F(*) G(s)

—_— AU A

Fig. 3. First feedback loop for MIMO process.
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v, (1) =15(uy (D)
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[—Ul Y2 Y3 yn]T=Q2(S)V2
-1
y gus) 0 0
Qa(5) = {gdo(s) 10 }r P ] 6,0 an
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where, Qu(Sqm() Gl®) - Gur(9]'s Gl [21mlS) LomlS) -
gan(S)]" and I, denotes the k x k unity matrix.

The second activations are put to the second input uy(t) sequentially
as shown in figure 4. Then, the second loop will oscillate due to the
activations. By analyzing oscillations in similar manner to the first
activations, we can obtain the second nonlinear element fy(*) and
frequency responses of Qux(s) at frequencies of 0, 2P, 4n/P, ...,
where P, is the oscillation period. Since g;(s) for i=1, 2, 3, ..., n are
already identified in the first activations, we can obtain frequency
responses of gp(s) from (17). Then FOPTD model parameters of g(s)
can be estimated by (15). It is remarked that uy(t) instead of y\(t) is
used to identify g)»(s). The reason is that, due to the integral action in
the first feedback controller, we cannot obtain the steady state gain of
g1x(s) from the oscillation of y,(t). If the P controller, which doesn’t
include the integral action, is used as g.i(s), there is no such problem
and y; can be used. Then, the second feedback controller can be
designed from estimated f5(*) and gx(s).

Similarly, after former m-loops are closed, if former m-set points
and latter inputs except Uy.(t) are equal to zero, the overall SIMO
Hammerstein nonlinear process is as follows.

Vm+1 (H= fm+1 (Um41(D)

. (8)
[_ul " Um Ymel Yn] = Qma1(8)Vm41
= -
Ty by " Gm‘(s)_’tl :( ) Ups | YooY
* fm.l(.) . . v
- 170} :’ Gis) YooY
= —
)——

£7) WUy YooV
G ()= > .
: o) , _—
u F(.) 2’ G(S) L w1 n
i+l
(—>

®)

Fig. 4. (m+1)-th activations: (a) relay feedback test, (b) triangular test
signal activation.

Qm+1(®) =

g - gmGe 0 - 0
Gah(s)+ P G 19

gni(s) - gum(s) 0 -+ 0

gcl(s) 0 0 0
e, G| 0 0
WIS, Hem 0 0 g 0
0 0 | S

Note that when the loops are sequentially closed, each feedback
controllers contain inverses of the nonlinear static functions. In this
reason, we assume that the nonlinear elements of each loop perfectly
eliminated. The transfer functions are identified column-wisely and
the nonlinear elements are identified sequentially.

V. Case Study
Simulations are carried out to show that the proposed identification
method can estimate the nonlinear static function matrix and the linear
transfer function matrix.
1. 2x2 Hammerstein nonlinear process
Consider the Wood and Berry column with following input
nonlinear elements.

v(t) = vi(t)
6/(1+ exp(—u, (t))) +3 20)

-2 for uj(t) <=2
where, | ()= du,(t) for —2<u (<2
2 for uj(t)<2

As shown in (20), the first nonlinear element is a saturation
nonlinearity and the second nonlinear element contains exponential
function. The biased relay is used to estimate frequency information of
the first column linear subsystem. After the relay oscillation of the
first loop as shown in Figure 5, a triangular type input with same
period of relay feedback test is applied in the first loop. Using (11) and
(12), we can get the data set of the first nonlinear function as shown in
Figure 6. After the estimation of the nonlinear function, using (15), we
can identify the transfer functions of the first column elements as
follows.

g11(5) = 12.7991exp(=1.0055)/(16.6996s + 1)
£21(5) = 6.6015exp(~7.00495)/(10.9019s +1)

From the identified transfer function g;,(s), we can design the first
loop controller by the SISO IMC-PI method as g.(s)=0.1344
(1+1/17.2021s) and close the first feedback loop. Under the first
feedback loop closed, the second activations are put to uy(t). Figure
7 shows the effect of the triangular type input for ux(t). From these
activated outputs, we can estimate the second nonlinear function
and the second column elements of the transfer function matrix by
using (17).
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Fig. 5. First biased relay feedback test for the first input in the wood
and berry column.

Fig, 6. Identification result for the first nonlinear function in the wood
and berry column.
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Fig. 7. Second activation by the triangular-type test signal in the wood
and berry column.

The obtained transfer function matrix is
12.7991exp(—1.005s)  —23.1102exp(—3.0046s)

G(s) = 16.6996s + 1 20.99415+1
6.6015exp(—7.0049s) —23.7447 exp(—3.0052s)
10.9019s+1 14.4013s+1

and the estimated nonlinear function is described in figure 8. Note that
the identified process gains of the second column elements are
different from the Wood and Berry column. However the difference of
the gain is compensated in the estimation of nonlinear static function,
as shown in figure 8.
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Fig. 8. Identification result for the second nonlinear function in the
wood and berry column.
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Fig. 9. First biased relay feedback test for the first input in the
ogunnaike and ray column.

2. 3x3 Hammerstein nonlinear process

Consider the Ogunnaike and Ray system with following input
nonlinearities

6/(L+exp(—u;(D)H+3 0 0

v(t) = 0 Vo) 0 03)
0 0 vs(t)

-2 for u,(t) <-2

where, v,(t)=qu,(t) for-2<u,(t)<2 and
2 foru,(t)<2
—[us(t))  f t)<0
va(t) = |3()I or uz(t) <

for uz(t)>0

Jus(®

With the same approach in the example 1, the first activation is
applied in the first input while other loops are open. Figure 9 shows
the activated process output by relay feedback test for the first input.
After an estimation of the transfer functions of the first column
elements and the first nonlinear function, we tune the first loop
controller. Sequentially, other loops are identified and closed.
Controllers designed by the SISO IMC-PI tuning method sequentialty
are

g01(5) = 1.0614(1+1/8.0025s)
8.0 (s) =-0.2740(1 +1/6.5040s)
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The whole transfer function matrix is identified as following
equation and estimated nonlinear static functions are described in
figure 10.

[ 0756726 _061e5%  _0.004e™10 |
6.70s +1 8.65s+1 9.05s+1

G(o) = 12778515 23767308 _g 0o7e7120s
3.25s+1 5.00s+1 7.08s+1
-39.62¢79215 4646740 (.61e709%

8.155+1 10.90s +1 634s+1 |

V1. Conclusions

We suggested a method to identify a MIMO hammerstein
nonlinear process models while multiloop control systems are being
tuned. We propose the series activation method that consist a series of
biased relay feedback test and an triangular test signal activation with
same period of relay test. The series activation is used to tune each
loop of'the paired input and output. From the series activation, we can
identify the nonlinear functions and the first order plus time delay
models of the linear dynamic subsystem. The proposed identification
method has several advantages that the frequency responses of the
linear dynamic subsystem can be obtained and identified nonlinear
functions can be used to eliminate the nonlinearity. In addition, when
an actuator has its own saturation, we can exactly identify it. This
characteristic can be applied to controller design for removing reset
windup. The obtained full transfer function matrix can be used to
reduce the time-consuming field experiments in the sequential loop
closing method and to correct pairing, The identified transfer function
matrix can also be used to design other model based control systems
such as the decoupling control systems.
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