• Title/Summary/Keyword: charging

Search Result 2,515, Processing Time 0.026 seconds

Preparation and Electrochemical Properties of Freestanding Flexible S/CNT/NiO Electrodes for Li-S Batteries (리튬-황 전지용 프리스탠딩 플렉서블 S/CNT/NiO 전극의 제조 및 전기화학적 특성)

  • Shin, Yun Jung;Lee, Won Yeol;Kim, Tae Yun;Moon, Seung-Guen;Jin, En Mei;Jeong, Sang Mun
    • Korean Chemical Engineering Research
    • /
    • v.60 no.2
    • /
    • pp.184-192
    • /
    • 2022
  • Porous NiO synthesized via hydrothermal synthesis was used in the electrodes of lithium-sulfur batteries to inhibit the elution of lithium polysulfide. The electrode of the lithium-sulfur battery was manufactured as a freestanding flexible electrode using an economical and simple vacuum filtration method without a current collector and a binder. The porous NiO-added S/CNT/NiO electrode exhibited a high initial discharge capacity of 877 mA h g-1 (0.2 C), which was 125 mA h g-1 higher than that of S/CNT, and also showed excellent retention of 84% (S/CNT: 66%). This is the result of suppressing the dissolution of lithium polysulfide into the electrolyte by the strong chemical bond between NiO and lithium polysulfide during the charging and discharging process. In addition, for the flexibility test of the S/CNT/NiO electrode, the 1.6 × 4 cm2 pouch cell was prepared and exhibited stable cycle characteristics of 620 mA h g-1 in both the unfolded and folded state.

A Study on the Development of Low-Altitude and Long-Endurance Solar-Powered UAV from Korea Aerospace University (1) - System Design of a Solar Powered UAV with 4.2m Wingspan - (한국항공대학교 저고도 장기체공 태양광 무인기 개발에 관한 연구 (1) - 주익 4.2m 태양광 무인기 시스템 설계 -)

  • Jeong, Jaebaek;Kim, Doyoung;Kim, Taerim;Moon, Seokmin;Bae, Jae-Sung;Park, Sanghyuk
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.7
    • /
    • pp.471-478
    • /
    • 2022
  • This paper is about research and development of Korea Aerospace University's Solar-Powered UAV System that named of KAU-SPUAV, and describes the design process of the 4.2 m solar UAV that succeeded in a long flight of 32 hours and 19 minutes at June 2020. In order to improve the long-term flight performance of the KAU-SPUAV, For reduce drag, a circular cross-section of the fuselage was designed, and manufactured light and sturdy fuselage by applying a monocoque structure using a glass fiber composite material. In addition, a solar module optimized for the wing shape of a 4.2 m solar drone was constructed and arranged, and a propulsion system applied with the 23[in] × 23[in] propeller was constructed to improve charging and flight efficiency. The developed KAU-SPUAV consumes an average of 55W when cruising and can receive up to 165W of energy during the day, and its Long-term Endurance was verified through flight tests.

Development of High-Sensitivity and Entry-Level Nuclide Analysis Module (고감도 보급형 핵종 분석 모듈 개발)

  • Oh, Seung-Jin;Lee, Joo-Hyun;Lee, Seung-Ho
    • Journal of IKEEE
    • /
    • v.26 no.3
    • /
    • pp.515-519
    • /
    • 2022
  • In this paper, we propose the development of a high-sensitivity entry-level nuclide analysis module. The proposed measurement sensor module consists of an electronic driving circuit for nuclide analysis resolution, prototype production with nuclide analysis function, and GUI development applied to prototypes. The electronic part driving circuit for nuclide analysis resolution is divided into nuclide analysis resolution process by the electronic part driving circuit block diagram, MCU circuit design used for radiation measurement, and PC program design for Spectrum acquisition. Prototyping with nuclide analysis function is made by adding a 128×128 pixel OLED display, three buttons for operation, a Li-ion battery, and a USB-C type port for charging the battery. The GUI development department applied to the prototype develops the screen composition such as the current time, elapsed measurement time, total count, and nuclide Spectrum. To evaluate the performance of the proposed measurement sensor module, an expert witness test was conducted. As a result of the test, it was confirmed that the calculated result by applying the resolution formula to the Spectrum (FWHM@662keV) obtained using the Cs-137 standard source in the nuclide analysis device had a resolution of 17.77%. Therefore, it was confirmed that the nuclide analysis resolution method proposed in this paper produces improved performance while being cheaper than the existing commercial nuclide analysis module.

Proposal on Active Self Charging and Operation of Autonomous Vehicle Using Solar Energy (태양광을 이용한 자율주행 자동차의 능동적 자가 충전 및 운행 제안)

  • Hur, Hyun-Woo
    • The Journal of the Korea Contents Association
    • /
    • v.22 no.9
    • /
    • pp.85-94
    • /
    • 2022
  • In modern society, environmental and energy problems have caused to replace cars with environment friendly energy. Vehicles with internal combustion engine which use petroleum are one of the factors that influence global pollution due to environment problems such as fine dust and ozone layer destruction. In addition use of energies for automobile making resources to become depleted. To solve this limited oil energy problem by using other energy sources. To the problem using electric energy and green energy as alternative for a solution. Among environment friendly energies this paper studies the possibility of drive service for autonomous vehicles that self-charges using only solar energy and whether they can be used as pollution free and alternative energy for automobiles. Studies was researched based on published literature review, data from ministry of transportation and automobile companies. Also case of electric vehicle and prototype automobile using only solar energy and the theory of near future technologies. Many automakers are using electric cars as alternative energy. Also making efforts to use solar energy as an substitute energy source and as a way to supplement electricity. Results show that there is a potential on operating autonomous vehicle using only solar energy. Furthermore, it will be possible to use automobiles actively, also use and supply solar energy. This paper suggest the possibility of contributing to the future of the automotive industry.

Nanofibers Comprising Mo2C/Mo2N Nanoparticles and Reduced Graphene Oxide as Functional Interlayers for Lithium-Sulfur Batteries (Mo2C/Mo2N 나노 입자와 환원된 그래핀 옥사이드가 복합된 나노 섬유 중간층이 적용된 리튬-황 전지)

  • Lee, Jae Seob;Yang, Ji Hoon;Cho, Jung Sang
    • Korean Chemical Engineering Research
    • /
    • v.60 no.4
    • /
    • pp.574-581
    • /
    • 2022
  • Nanofibers comprising reduced graphene oxide (rGO) and Mo2C/Mo2N nanoparticles (Mo2C/Mo2N rGO NFs) were prepared for a functional interlayer of Li-S batteries (LSBs). The well-dispersed Mo2C and Mo2N nanoparticles in the nanofiber structure served as active polar sites for efficient immobilization of dissolved lithium polysulfide. The rGO nanosheets in the structure also provide conductive channels for fast ion/electron transport during charging-discharging and ensured reuse of lithium polysulfide during redox reactions through a fast charge transfer process. As a result, the cell assembled with Mo2C/Mo2N rGO NFs-coated separator and pure sulfur electrode (70 wt% of sulfur content and 2.1 mg cm-2 of sulfur loading) showed a stable discharge capacity of 476 mA h g-1 after 400 charge-discharge cycles at 0.1 C. Furthermore, it exhibited a discharge capacity of 574 mA h g-1 even at a high current density of 1.0 C. Therefore, we believe that the proposed unique nanostructure synthesis strategy could provide new insights into the development of sustainable and highly conductive polar materials as functional interlayers for high performance LSBs.

A Study on the New Freight Charging Model for Parcel Service (택배서비스의 새로운 택배요금 모델에 관한 연구)

  • Song, Young-sim;Park, Hyun-Sung
    • Journal of Digital Convergence
    • /
    • v.19 no.5
    • /
    • pp.135-144
    • /
    • 2021
  • In Korea, the parcel delivery service is showing a high growth rate every year thanks to the activation of e-commerce, but the courier unit price continues to drop. Due to the low cost of parcel delivery, there is a need for improvement to normalize courier rates due to deterioration in profitability for couriers, deterioration in service for consumers, and overwork and accidents for workers. In this study, a rational rate system model and a systematic approach were presented. The study method modeled the chargeable weight by reflecting the voulumatirc weight and revenue ton by the volume and weight of the cargo, and presented a new parcel freight charge model based on the cost of delivery. In addition, a rate-determining support system was developed that can be easily, conveniently and reasonably determined on-site. In the demonstration, the rate difference was determined by relying on weight rather than volume, and 63.5% for personal courier and 40% for B2C courier were found to be inadequate. This study could be used as an alternative to solving side effects and problems at the delivery site, in the urgent need for research on ways to improve delivery prices.

The study on collection efficiency of two-stage electrostatic precipitator using non-metallic electrode for improve corrosion resistance and light weight (내부식성과 경량성 향상을 위한 비금속 재질 집진판의 2단 전기집진기 집진효율 연구)

  • An, So-Hee;Lee, Yeawan;Kim, Ye-Sle;Kim, Yong-Jin;Han, Bangwoo;Kim, Hak-Joon
    • Particle and aerosol research
    • /
    • v.17 no.2
    • /
    • pp.21-27
    • /
    • 2021
  • We developed non-metallic electrodes that can replace metallic electrodes of the electrostatic precipitator(ESP) for the purpose of light weight, corrosion resistance, cost reduction. We manufactured three types of collection electrodes made of stainless steel (M), Carbon ink coating layer-Plastic sheet-Carbon ink coating layer (CPC), and Plastic sheet-Carbon ink coating layer-Plastic sheet (PCP). We studied the collection efficiency of a two-stage ESP using oil mist particles with and without collection stage by changing the flow rate, the material of collection electrode, and the applied voltage of the pre-charger module and the collection module. Here we measured concentrations of particles at diameters of 0.45 ㎛ (CMD; count median diameter) and 3.0 ㎛ (MMD : mass median diameter), as well as PM2.5 and PM10. As a result of the experiment, two-stage ESP had 22~25% higher collection efficiency in PM2.5 than one-stage ESP at the same applied voltage. The difference in collection efficiency by varying the materials of collection electrodes was less than 5%. The weight of the non-metallic electrode was only one eighth the weight of the metal electrode. CPC electrode had a thickness of 0.27 mm, which was 1.5 times thinner than a thickness of PCP electrode, so when the flow rate increased, the CPC electrodes couldn't be kept at equal intervals due to the fluttering unlike PCP electrodes. In addition, the PCP-CPC collection module of the present experiment followed the theoretical efficiency based on Deutsch equation and Cochet's charging theory.

Application of Layer-by-Layer Assembly in Triboelectric Energy Harvesting (마찰대전 기반의 에너지 하베스팅에서 다층박막적층법의 응용)

  • Habtamu Gebeyehu, Menge;Yong Tae, Park
    • Composites Research
    • /
    • v.35 no.6
    • /
    • pp.371-377
    • /
    • 2022
  • Triboelectric nanogenerator (TENG) devices have generated a lot of interest in recent decades. TENG technology, which is one of the technologies for harvesting mechanical energy among the energy wasted in the environment, is obtained by the dual effect of electrostatic induction and triboelectric charging. Recently, a multilayer thin film stacking method (or layer-by-layer (LbL) self-assembly technique) is being considered as a method to improve the performance of TENG and apply it to new fields. This LbL assembly technology can not only improve the performance of TENG and successfully overcome the thickness problem in applications, but also present an inexpensive, environmentally friendly process and be used for large-scale and mass production. In this review, recent studies in the accomplishment of LbL-based materials for TENG devices are reviewed, and the potential for energy harvesting devices reviewed so far is checked. The advantages of the TENG device fabricated by applying the LbL technology are discussed, and finally, the direction and perspective of this fabrication technology for the implementation of various ultra-thin TENGs are briefly presented.

A Review on the Deposition/Dissolution of Lithium Metal Anodes through Analyzing Overpotential Behaviors (과전압 거동 분석을 통한 리튬 금속 음극의 전착/탈리 현상 이해)

  • Han, Jiwon;Jin, Dahee;Kim, Suhwan;Lee, Yong Min
    • Journal of the Korean Electrochemical Society
    • /
    • v.25 no.1
    • /
    • pp.1-12
    • /
    • 2022
  • Lithium metal is the most promising anode for next-generation lithium-ion batteries due to its lowest reduction potential (-3.04 V vs. SHE) and high specific capacity (3860 mAh/g). However, the dendritic formation under high charging current density remains one of main technical barriers to be used for commercial rechargeable batteries. To address these issues, tremendous research to suppress lithium dendrite formation have been conducted through new electrolyte formulation, robust protection layer, shape-controlled lithium metal, separator modification, etc. However, Li/Li symmetric cell test is always a starting or essential step to demonstrate better lithium dendrite formation behavior with lower overpotential and longer cycle life without careful analysis. Thus, this review summarizes overpotential behaviors of Li/Li symmetric cells along with theoretical explanations like initial peaking or later arcing. Also, we categorize various overpotential data depending on research approaches and discuss them based on peaking and arcing behaviors. Thus, this review will be very helpful for researchers in lithium metal to analyze their overpotential behaviors.

Crash Safety Evaluation of LNG Fuel Containers for Vehicles using ANSYS Explicit Dynamics (ANSYS Explicit Dynamics 해석을 활용한 차량용 LNG 용기의 충돌안전성 평가)

  • Nam, SuHyun;Kim, JiYu;Kim, EuiSoo
    • Journal of the Korean Institute of Gas
    • /
    • v.26 no.4
    • /
    • pp.58-63
    • /
    • 2022
  • With the emergence of environmental problems caused by fine dust worldwide, LNG, which is cheaper and less pollution than diesel, is attracting attention as the next generation energy of automobiles and is expanding its supply. However, it is difficult to operate smoothly due to the lack of infrastructure for LNG charging stations in Korea and the limited size of containers that can be installed according to regulations. In Korea, research and development on the contents of containers for the smooth operation of natural gas vehicles are underway, but there is a problem that the container directly receives the impact of the vehicle collision and explodes, causing a major disaster. Therefore, in this study, the safety of the container was verified by deriving the strain and stress values through ANSYS Explicit Dynamics analysis. As a result, a maximum stress of 565.37MPa occurred in the container, and it is expected that plastic deformation will occur as it exceeds the yield stress of STS304 used as a material for the container, which is beyond 505MPa. When an impact caused by a collision between a vehicle and a container is applied, it is considered necessary to design a support or reinforcement because the container may be damaged or defective.