DOI QR코드

DOI QR Code

A Review on the Deposition/Dissolution of Lithium Metal Anodes through Analyzing Overpotential Behaviors

과전압 거동 분석을 통한 리튬 금속 음극의 전착/탈리 현상 이해

  • Han, Jiwon (Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST)) ;
  • Jin, Dahee (Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST)) ;
  • Kim, Suhwan (Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST)) ;
  • Lee, Yong Min (Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST))
  • 한지원 (대구경북과학기술원에너지공학과) ;
  • 진다희 (대구경북과학기술원에너지공학과) ;
  • 김수환 (대구경북과학기술원에너지공학과) ;
  • 이용민 (대구경북과학기술원에너지공학과)
  • Received : 2021.12.18
  • Accepted : 2022.01.25
  • Published : 2022.02.28

Abstract

Lithium metal is the most promising anode for next-generation lithium-ion batteries due to its lowest reduction potential (-3.04 V vs. SHE) and high specific capacity (3860 mAh/g). However, the dendritic formation under high charging current density remains one of main technical barriers to be used for commercial rechargeable batteries. To address these issues, tremendous research to suppress lithium dendrite formation have been conducted through new electrolyte formulation, robust protection layer, shape-controlled lithium metal, separator modification, etc. However, Li/Li symmetric cell test is always a starting or essential step to demonstrate better lithium dendrite formation behavior with lower overpotential and longer cycle life without careful analysis. Thus, this review summarizes overpotential behaviors of Li/Li symmetric cells along with theoretical explanations like initial peaking or later arcing. Also, we categorize various overpotential data depending on research approaches and discuss them based on peaking and arcing behaviors. Thus, this review will be very helpful for researchers in lithium metal to analyze their overpotential behaviors.

리튬이온전지의 성능과 안전성을 뛰어넘는 다양한 차세대전지 개발이 진행되고 있다. 특히, 흑연을 대신할 고용량 음극 소재로 리튬 금속을 사용하는 연구는 여전히 활발히 이뤄지고 있지만, 높은 충전 전류 밀도에서 형성되는 덴드라이트는 리튬 금속 전극 상용화에 가장 큰 걸림돌이다. 이에 따라, 전해질 첨가제, 보호막 도입, 리튬 형상 제어 등 다양한 접근법으로 덴드라이트 문제를 개선하기 위한 연구가 진행되어 왔으며, 중요한 실험 결과 중 하나로서 가장 많이 보고되는 것이 리튬 대칭셀을 이용한 과전압 거동 분석이다. 이 과전압 거동은 크게 세 단계로 구분될 수 있지만, 대부분의 연구에서는 단순히 제어 변수에 따른 과전압 감소나 대칭셀 수명 차이로 각 접근법이 덴드라이트 형성 제어에 효과적임을 주장하고 있다. 또한, 각 과전압 거동을 자세히 살펴보면, 리튬 핵 생성 및 성장되는 전착 과정이나 탈리 조건에 크게 영향을 받고 있음에도, 이에 대한 해석은 제한적으로 이뤄지고 있다. 뿐만 아니라, 전착/탈리 과정이 장기간 반복됨에 따라, Dead 리튬 형성으로 인한 물질전달 제한이 과전압에 영향을 주고 있음이 명확히 언급되고 있지 않다. 따라서, 본 총설에서는 이러한 리튬 대칭셀 과전압 분석에 있어, 각 과전압 거동에 대한 이론적 배경을 자세히 설명하고, 전해질 조성, 분리막, 리튬 형상 제어, 리튬 표면 개질에 따른 과전압 거동 분석 결과를 재조명한다.

Keywords

Acknowledgement

본 연구는 한국연구재단 과학기술정보통신부의 기초연구실지원사업(NRF-2020R1A4A4079810), 2022년도 산업통상자원부 및 산업기술평가관리원(KEIT)(20012326), 2019년도 상업자원통상부와 한국산업기술평가관리원의 이종기술융합형 사업(20003759)으로부터 지원받아 수행되었음을 밝히며 이에 감사드립니다.

References

  1. D. Lin, Y. Liu and Y. Cui, 'Reviving the lithium metal anode for high-energy batteries' Nature nanotechnology, 12, 194-206 (2017). https://doi.org/10.1038/nnano.2017.16
  2. K. Sun and Z. Peng, 'Intermetallic interphases in lithium metal and lithium ion batteries' InfoMat, 3, 1083-1109 (2021). https://doi.org/10.1002/inf2.12216
  3. X. Shen, H. Liu, X.-B. Cheng, C. Yan and J.-Q. Huang, 'Beyond lithium ion batteries: Higher energy density battery systems based on lithium metal anodes' Energy Storage Materials, 12, 161-175 (2018). https://doi.org/10.1016/j.ensm.2017.12.002
  4. B. Liu, J.-G. Zhang and W. Xu, 'Advancing Lithium Metal Batteries' Joule, 2, 833-845 (2018). https://doi.org/10.1016/j.joule.2018.03.008
  5. W. Xu, J. Wang, F. Ding, X. Chen, E. Nasybulin, Y. Zhang and J.-G. Zhang, 'Lithium metal anodes for rechargeable batteries' Energy & Environmental Science, 7, 513-537 (2014). https://doi.org/10.1039/C3EE40795K
  6. M. S. Whittingham, 'Electrical Energy Storage and Intercalation Chemistry' Science, 192, 1126-1127 (1976). https://doi.org/10.1126/science.192.4244.1126
  7. M. Li, J. Lu, Z. Chen and K. Amine, '30 years of lithium-ion batteries' Advanced Materials, 30, 1800561 (2018). https://doi.org/10.1002/adma.201800561
  8. B. Yoon, S. Kim, Y. M. Lee and M.-H. Ryou, 'Effect of the Quantity of Liquid Electrolyte on Self-Healing Electrostatic Shield Mechanism of CsPF6 Additive for Li Metal Anodes' ACS Omega, 4, 11724-11727 (2019). https://doi.org/10.1021/acsomega.9b00928
  9. Z. Xie, Z. Wu, X. An, X. Yue, A. Yoshida, X. Du, X. Hao, A. Abudula and G. Guan, '2-Fluoropyridine: A novel electrolyte additive for lithium metal batteries with high areal capacity as well as high cycling stability' Chemical Engineering Journal, 393, 124789 (2020). https://doi.org/10.1016/j.cej.2020.124789
  10. J.-S. Kim, D. W. Kim, H. T. Jung and J. W. Choi, 'Controlled lithium dendrite growth by a synergistic effect of multilayered graphene coating and an electrolyte additive' Chemistry of Materials, 27, 2780-2787 (2015). https://doi.org/10.1021/cm503447u
  11. H. Lee, D. J. Lee, Y.-J. Kim, J.-K. Park and H.-T. Kim, 'A simple composite protective layer coating that enhances the cycling stability of lithium metal batteries' Journal of Power Sources, 284, 103-108 (2015). https://doi.org/10.1016/j.jpowsour.2015.03.004
  12. S. Kim, J. Park, A. Friesen, H. Lee, Y. M. Lee and M.-H. Ryou, 'Composite protection layers for dendrite-suppressing non-granular micro-patterned lithium metal anodes' Electrochimica Acta, 282, 343-350 (2018). https://doi.org/10.1016/j.electacta.2018.05.102
  13. Q. Li, S. Zhu and Y. Lu, '3D porous Cu current collector/Li-metal composite anode for stable lithium-metal batteries' Advanced Functional Materials, 27, 1606422 (2017). https://doi.org/10.1002/adfm.201606422
  14. M. H. Ryou, Y. M. Lee, Y. Lee, M. Winter and P. Bieker, 'Mechanical surface modification of lithium metal: towards improved Li metal anode performance by directed Li plating' Advanced Functional Materials, 25, 834-841 (2015). https://doi.org/10.1002/adfm.201402953
  15. J. Heine, S. Kruger, C. Hartnig, U. Wietelmann, M. Winter and P. Bieker, 'Coated Lithium Powder (CLiP) Electrodes for Lithium-Metal Batteries' Advanced Energy Materials, 4, 1300815 (2014). https://doi.org/10.1002/aenm.201300815
  16. K. N. Wood, E. Kazyak, A. F. Chadwick, K.-H. Chen, J.-G. Zhang, K. Thornton and N. P. Dasgupta, 'Dendrites and pits: Untangling the complex behavior of lithium metal anodes through operando video microscopy' ACS central science, 2, 790-801 (2016). https://doi.org/10.1021/acscentsci.6b00260
  17. K.-H. Chen, K. N. Wood, E. Kazyak, W. S. LePage, A. L. Davis, A. J. Sanchez and N. P. Dasgupta, 'Dead lithium: mass transport effects on voltage, capacity, and failure of lithium metal anodes' Journal of Materials Chemistry A, 5, 11671-11681 (2017). https://doi.org/10.1039/C7TA00371D
  18. M. L. Meyerson, J. K. Sheavly, A. Dolocan, M. P. Griffin, A. H. Pandit, R. Rodriguez, R. M. Stephens, D. A. V. Bout, A. Heller and C. B. Mullins, 'The effect of local lithium surface chemistry and topography on solid electrolyte interphase composition and dendrite nucleation' Journal of Materials Chemistry A, 7, 14882-14894 (2019) https://doi.org/10.1039/c9ta03371h
  19. J. S. Kim and W. Y. Yoon, 'Improvement in lithium cycling efficiency by using lithium powder anode' Electrochimica acta, 50, 531-534 (2004). https://doi.org/10.1016/j.electacta.2003.12.071
  20. D. Jin, H.-S. Bae, J. Hong, S. Kim, J. Oh, K. Kim, T. Jo, Y. M. Lee, Y.-G. Lee and M.-H. Ryou, 'Scaffold-structured polymer binders for long-term cycle performance of stabilized lithium-powder electrodes' Electrochimica Acta, 364, 136878 (2020). https://doi.org/10.1016/j.electacta.2020.136878
  21. D. Jin, Y. Roh, T. Jo, M. H. Ryou, H. Lee and Y. M. Lee, 'Robust Cycling of Ultrathin Li Metal Enabled by Nitrate-Preplanted Li Powder Composite' Advanced Energy Materials, 11, 2003769 (2021). https://doi.org/10.1002/aenm.202003769
  22. L. Yu, N. L. Canfield, S. Chen, H. Lee, X. Ren, M. H. Engelhard, Q. Li, J. Liu, W. Xu and J. G. Zhang, 'Enhanced stability of lithium metal anode by using a 3D porous nickel substrate' Chem. Electro. Chem., 5, 761-769 (2018).
  23. J.-I. Yamaki, S.-I. Tobishima, K. Hayashi, K. Saito, Y. Nemoto and M. Arakawa, 'A consideration of the morphology of electrochemically deposited lithium in an organic electrolyte' Journal of Power Sources, 74, 219-227 (1998). https://doi.org/10.1016/S0378-7753(98)00067-6
  24. Y.-K. Huang, R. Pan, D. Rehnlund, Z. Wang, L. Nyholm, 'First-Cycle Oxidative Generation of Lithium Nucleation Sites Stabilizes Lithium-Metal Electrodes' Advanced Energy Materials, 11, 2003674 (2021) https://doi.org/10.1002/aenm.202003674
  25. B. Wu, J. Lochala, T. Taverne and J. Xiao, 'The interplay between solid electrolyte interface (SEI) and dendritic lithium growth' Nano Energy, 40, 34-41 (2017). https://doi.org/10.1016/j.nanoen.2017.08.005
  26. W. Wang, F. Hao and P. P. Mukherjee, 'Mechanistics of lithium-metal battery performance by separator architecture design' ACS applied materials & interfaces, 12, 556-566 (2019).
  27. T. Zhang, J. Yang, Z. Xu, H. Li, Y. Guo, C. Liang and J. Wang, 'Suppressing dendrite growth of a lithium metal anode by modifying conventional polypropylene separators with a composite layer' ACS Applied Energy Materials, 3, 506-513 (2019). https://doi.org/10.1021/acsaem.9b01763
  28. J. Park, D. Kim, D. Jin, C. Phatak, K. Y. Cho, Y.-G. Lee, S. Hong, M.-H. Ryou and Y. M. Lee, 'Size effects of micro-pattern on lithium metal surface on the electrochemical performance of lithium metal secondary batteries' Journal of power sources, 408, 136-142 (2018). https://doi.org/10.1016/j.jpowsour.2018.09.061
  29. T. Liu, Q. Hu, X. Li, L. Tan, G. Yan, Z. Wang, H. Guo, Y. Liu, Y. Wu and J. Wang, 'Lithiophilic Ag/Li composite anodes via a spontaneous reaction for Li nucleation with a reduced barrier' Journal of Materials Chemistry A, 7, 20911-20918 (2019). https://doi.org/10.1039/c9ta05335b
  30. L. Lin, F. Liang, K. Zhang, H. Mao, J. Yang and Y. Qian, 'Lithium phosphide/lithium chloride coating on lithium for advanced lithium metal anode' Journal of Materials Chemistry A, 6, 15859-15867 (2018). https://doi.org/10.1039/c8ta05102j