DOI QR코드

DOI QR Code

Daily Amperometric Monitoring of Immunoglobulin E in a Mouse Whole Blood: Model of Ovalbumin Induced Asthma

  • Lee, Ju Kyung (Office of Hustar Medical industry innovation university project, Kumoh National Institute of Technology) ;
  • Yoon, Sung-hoon (Inhalation toxicology center for airborne risk factor, Korea institute of toxicology) ;
  • Kim, Sang Hee (Department of Medical IT Convergence, Kumoh National Institute of Technology)
  • Received : 2021.09.23
  • Accepted : 2021.11.03
  • Published : 2022.02.28

Abstract

There is an increasing interest in monitoring of specific biomarker for determining progression of a disease or efficacy of a treatment. Conventional method for quantification of specific biomarkers as enzyme linked immunosorbent assay (ELISA) has high material costs, long incubation periods, requires large volume of samples and involves special instruments, which necessitates clinical samples to be sent to a lab. This paper reports on the development of an electrochemical biosensor to measure total immunoglobulin E (IgE), a marker of asthma disease that varies with age, gender, and disease in concentrations from 0.3-1000 ng/mL with consuming 20 µL volume of whole blood sample. The sensor provides rapid, accurate, easy, point-of-care measurement of IgE, also, sequential monitoring of total IgE with ovalbumin (OVA) induced mice is another application of sensor. Taken together, these results provide an alternative way for detection of biomarkers in whole blood with low volumes and long-term ex-vivo assessments for understanding the progression of a disease.

Keywords

Acknowledgement

This research was supported by Kumoh National Institute of Technology (2018-104-041)

References

  1. Lotvall J, Akdis CA, Bacharier LB, Bjermer L, Casale TB, Custovic A, Lemanske RF Jr, Wardlaw AJ, Wenzel SE, and Greenberger PA, J Allergy Clin Immunol., 127(2), 355-360 (2011). https://doi.org/10.1016/j.jaci.2010.11.037
  2. Wendell SG, Baffi C, and Holguin F, J Allergy Clin Immunol., 133(5), 1255-64 (2014). https://doi.org/10.1016/j.jaci.2013.12.1087
  3. Aggarwal T, Wadhwa R, Thapliyal N, Sharma K, Rani V, and Maurya PK, J Cell Physiol., 234(3), 2067-2082 (2019). https://doi.org/10.1002/jcp.27181
  4. Kim HY, Kim MS, Kim SH, Joen D, and Lee K, Molecules., 23(8), 1974 (2018). https://doi.org/10.3390/molecules23081974
  5. Hines EA, Szakaly RJ, Leng N, Webster AT, Verheyden JM, Lashua AJ, Kendziorski C, Rosenthal LA, Gern JE, Sorkness RL, Sun X, and Lemanske RF Jr, PLoS One., 9(12), e112997 (2014). https://doi.org/10.1371/journal.pone.0112997
  6. Bai F, Fang L, Hu H, Yang Y, Feng X, and Sun D, Biosci Biotechnol Biochem., 83(3), 531-537 (2019). https://doi.org/10.1080/09168451.2018.1543015
  7. Song J, Kim W, Kim YB, Kim B, and Lee K, Toxicol Appl Pharmacol., 345, 94-102 (2018). https://doi.org/10.1016/j.taap.2018.02.013
  8. Park EJ, Park SJ, Kim S, Lee K, and Chang J, Toxicol Lett., 286, 108-119 (2018). https://doi.org/10.1016/j.toxlet.2018.01.003
  9. Salimi A, Khezrian S, Hallaj R, and Vaziry A, Anal Biochem., 466, 89-97 (2014). https://doi.org/10.1016/j.ab.2014.08.019
  10. Carrington R, Jordan S, Pitchford SC, and Page CP, Pulm Pharmacol Ther., 51, 73-78 (2018). https://doi.org/10.1016/j.pupt.2018.07.002
  11. Samitas K, Delimpoura V, Zervas E, and Gaga M, Eur Respir Rev., 24(138), 594-601 (2015). https://doi.org/10.1183/16000617.00001715
  12. Prado IC, Souza ALA, Provance DW Jr, Cassella RJ, and De-Simone SG, Anal Biochem., 538, 13-19 (2017). https://doi.org/10.1016/j.ab.2017.09.008
  13. Djukanovic R, Hanania N, Busse W, and Price D, Respir Med., 112, 128-129 (2016). https://doi.org/10.1016/j.rmed.2015.10.013
  14. Patel TR and Sur S, Curr Opin Allergy Clin Immunol., 17(1), 42-49 (2017). https://doi.org/10.1097/ACI.0000000000000336
  15. Gould HJ and Sutton BJ, Nat Rev Immunol., 8(3), 205-217 (2008). https://doi.org/10.1038/nri2273
  16. Nwankire CE, Venkatanarayanan A, Glennon T, Keyes TE, Forster RJ, and Ducree J, Biosens Bioelectron., 68, 382-389 (2015). https://doi.org/10.1016/j.bios.2014.12.049
  17. Magliulo M, Mallardi A, Gristina R, Ridi F, Sabbatini L, Cioffi N, Palazzo G, and Torsi L, Anal Chem., 85(8), 3849-3857 (2013). https://doi.org/10.1021/ac302702n
  18. Cinti S, Valdes-Ramirez G, Gao W, Li J, Palleschi G, and Wang J, Chem Commun (Camb)., 51(41), 8668-8671 (2015). https://doi.org/10.1039/c5cc02222c
  19. Lee JK, Bubar CT, Moon HG, Kim J, Busnaina A, Lee HY, and Shefelbine SJ, ACS Sens., 3(12), 2709-2715 (2018). https://doi.org/10.1021/acssensors.8b01298
  20. Zhao S, Yang W, and Lai RY, Biosens Bioelectron., 26(5), 2442-7 (2011). https://doi.org/10.1016/j.bios.2010.10.029
  21. Lee JK, Cho SH, Lee JH, Ryu HY, Park JG, Lim SH, Oh BD, Lee CW, Huang W, Busnaina A, Lee HY, J. Biotechnol., 168(4), 584-588 (2013). https://doi.org/10.1016/j.jbiotec.2013.08.029
  22. Riahi R, Shaegh SA, Ghaderi M, Zhang YS, Shin SR, Aleman J, Massa S, Kim D, Dokmeci MR, and Khademhosseini A, Sci Rep., 6, 24598 (2016). https://doi.org/10.1038/srep24598