DOI QR코드

DOI QR Code

Preparation and Electrochemical Properties of Freestanding Flexible S/CNT/NiO Electrodes for Li-S Batteries

리튬-황 전지용 프리스탠딩 플렉서블 S/CNT/NiO 전극의 제조 및 전기화학적 특성

  • Shin, Yun Jung (Department of Chemical Engineering, Chungbuk National University) ;
  • Lee, Won Yeol (Department of Chemical Engineering, Chungbuk National University) ;
  • Kim, Tae Yun (SNPLAB co. Ltd.) ;
  • Moon, Seung-Guen (Sungjin Corp., Ltd) ;
  • Jin, En Mei (Department of Chemical Engineering, Chungbuk National University) ;
  • Jeong, Sang Mun (Department of Chemical Engineering, Chungbuk National University)
  • Received : 2021.10.22
  • Accepted : 2021.11.16
  • Published : 2022.05.01

Abstract

Porous NiO synthesized via hydrothermal synthesis was used in the electrodes of lithium-sulfur batteries to inhibit the elution of lithium polysulfide. The electrode of the lithium-sulfur battery was manufactured as a freestanding flexible electrode using an economical and simple vacuum filtration method without a current collector and a binder. The porous NiO-added S/CNT/NiO electrode exhibited a high initial discharge capacity of 877 mA h g-1 (0.2 C), which was 125 mA h g-1 higher than that of S/CNT, and also showed excellent retention of 84% (S/CNT: 66%). This is the result of suppressing the dissolution of lithium polysulfide into the electrolyte by the strong chemical bond between NiO and lithium polysulfide during the charging and discharging process. In addition, for the flexibility test of the S/CNT/NiO electrode, the 1.6 × 4 cm2 pouch cell was prepared and exhibited stable cycle characteristics of 620 mA h g-1 in both the unfolded and folded state.

수열합성을 통해 합성한 다공성 NiO는 리튬 폴리설파이드의 용출을 억제하기 위하여 리튬-황 전지의 전극에 사용되었다. 리튬-황 전지의 전극은 경제적이고 간단한 진공 여과 방법을 이용하여 집전체와 바인더가 없는 프리스탠딩 플렉서블 전극으로 제작되었다. 다공성 NiO를 첨가한 S/CNT/NiO 전극은 순수 S/CNT 전극에 비해 125 mA h g-1 증가한 877 mA h g-1 (0.2 C)의 초기 방전용량과 200 사이클 후 84% (S/CNT: 66%)의 우수한 용량 유지율을 나타내었다. 이는 방전 과정 중에서 NiO와 리튬 폴리설파이드의 강한 화학적 결합에 의하여 리튬 폴리설파이드의 전해질로 용출되는 것을 억제하여 나타난 결과이다. 또한 S/CNT/NiO 전극의 유연성 테스트를 위해 1.6 × 4 cm2의 파우치셀로 제작하여 폴딩한 상태와 하지 않은 상태에서 모두 620 mA h g-1의 안정적인 사이클 특성을 나타내었다.

Keywords

Acknowledgement

이 논문은 2021학년도 충북대학교 연구년제 사업의 연구비 지원에 의하여 연구되었음.

References

  1. Kim, T., Song, W., Son, D.-Y., Ono, L. K. and Qi, Y., "LithiumIon Batteries: Outlook on Present, Future, and Hybridized Technologies," Journal of Materials Chemistry A., 7(7), 2942-2964(2019). https://doi.org/10.1039/C8TA10513H
  2. Ould Ely, T., Kamzabek, D., Chakraborty, D. and Doherty, M. F., "Lithium-Sulfur Batteries: State of the Art and Future Directions," ACS Applied Energy Materials., 1(5), 1783-1814(2018). https://doi.org/10.1021/acsaem.7b00153
  3. Wang, Z.-Y., Han, D.-D., Liu, S., Li, G.-R., Yan, T.-Y.,Gao, X.-P., "Conductive RuO2 Stacking Microspheres as an Effective Sulfur Immobilizer for Lithium-Sulfur Battery," Electrochimica Acta., 337(2020).
  4. Saroha, R., Ahn, J.-H.,Cho, J. S., "A Short Review on Dissolved Lithium Polysulfide Catholytes for Advanced Lithium-Sulfur Batteries," Korean Journal of Chemical Engineering., 38(3), 461-474(2021). https://doi.org/10.1007/s11814-020-0729-5
  5. Yang, C., Li, P., Yu, J., Zhao, L.-D. and Kong, L., "Approaching Energy-Dense and Cost-Effective Lithium-Sulfur Batteries: From Materials Chemistry and Price Considerations," Energy., 201(2020).
  6. Jin, E., Lee, G., Na, B. and Jeong, M., "Electrochemical Properties of Commercial NCA Cathode Materials for High Capacity of Lithium Ion Battery," Korean Chem. Eng. Res., 55(2), 163-169(2017).
  7. Jo, M. and Cho, J., "Application of Hierarchically Porous Fe2O3 Nanofibers for Anode Materials of Lithium-ion Batteries," Korean Chem. Eng. Res., 57(2), 267-273(2019).
  8. Lee, Y., Jeong, S. and Cho, J., "Application of Porous Nanofibers Comprising Hollow α-Fe2O3 Nanospheres Prepared by Applying Both PS Template and Kirkendall Diffusion Effect for Anode Materials in Lithium-ion Batteries," Korean Chem. Eng. Res., 56(6), 819-825(2018).
  9. Gueon, D., Hwang, J. T., Yang, S. B., Cho, E., Sohn, K., Yang, D.-K. and Moon, J. H., "Spherical Macroporous Carbon Nanotube Particles with Ultrahigh Sulfur Loading for Lithium-Sulfur Battery Cathodes," ACS Nano., 12(1), 226-233(2018). https://doi.org/10.1021/acsnano.7b05869
  10. Manthiram, A., Fu, Y., Chung, S.-H., Zu, C. and Su, Y.-S., "Rechargeable Lithium-Sulfur Batteries," Chemical Reviews., 114(23), 11751-11787(2014). https://doi.org/10.1021/cr500062v
  11. Saroha, R., Oh, J. H., Seon, Y. H., Kang, Y. C., Lee, J. S., Jeong, D. W. and Cho, J. S., "Freestanding Interlayers for Li-S Batteries: Design and Synthesis of Hierarchically Porous N-Doped C Nanofibers Comprising Vanadium Nitride Quantum Dots and Mof-Derived Hollow N-Doped C Nanocages," Journal of Materials Chemistry A., 9(19), 11651-11664(2021). https://doi.org/10.1039/D1TA01802G
  12. Zhu, M., Tang, J., Wei, W. and Li, S., 'Recent Progress in the Syntheses and Applications of Multishelled Hollow Nanostructures," Materials Chemistry Frontiers., 4(4), 1105-1149(2020). https://doi.org/10.1039/c9qm00700h
  13. Raulo, A., Bandyopadhyay, S., Ahamad, S., Gupta, A., Srivastava, R., Formanek, P. and Nandan, B., "Bio-Inspired Poly(3,4-Ethylenedioxythiophene): Poly(Styrene Sulfonate)-Sulfur@Polyacrylonitrile Electrospun Nanofibers for Lithium-Sulfur Batteries," Journal of Power Sources., 431, 250-258(2019). https://doi.org/10.1016/j.jpowsour.2019.05.055
  14. Zhang, J., Yang, C. P., Yin, Y. X., Wan, L. J. and Guo, Y. G., "Sulfur Encapsulated in Graphitic Carbon Nanocages for High-Rate and Long-Cycle Lithium-Sulfur Batteries," Adv Mater., 28(43), 9539-9544(2016). https://doi.org/10.1002/adma.201602913
  15. Liu, S., Li, Y., Zhang, C., Chen, X., Wang, Z., Cui, F., Yang, X. and Yue, W., "Amorphous TiO2 Nanofilm Interface Coating on Mesoporous Carbon as Efficient Sulfur Host for Lithium-Sulfur Batteries," Electrochimica Acta., 332(2020).
  16. Xu, Z.-L., Kim, J.-K. and Kang, K., "Carbon Nanomaterials for Advanced Lithium Sulfur Batteries," Nano Today., 19, 84-107(2018). https://doi.org/10.1016/j.nantod.2018.02.006
  17. Gong, Q., Gu, S., Li, J., Wang, Q., Sun, X. and Zhou, G., "Fabrication of Silica/Sulfur@Polyaniline Spheres with Radial Mesochannels as Enhanced Cathode Materials for High-Performance Lithium-Sulfur Batteries," ChemNanoMat., 6(5), 827-836(2020). https://doi.org/10.1002/cnma.202000085
  18. Jin, K., Zhou, X., Zhang, L., Xin, X., Wang, G. and Liu, Z., "Sulfur/Carbon Nanotube Composite Film as a Flexible Cathode for Lithium-Sulfur Batteries," The Journal of Physical Chemistry C., 117(41), 21112-21119(2013). https://doi.org/10.1021/jp406757w
  19. Zhang, Y. Z., Zhang, Z., Liu, S., Li, G. R. and Gao, X. P., "Free-Standing Porous Carbon Nanofiber/Carbon Nanotube Film as Sulfur Immobilizer with High Areal Capacity for Lithium-Sulfur Battery," ACS Appl Mater Interfaces., 10(10), 8749-8757(2018). https://doi.org/10.1021/acsami.8b00190
  20. Fan, L., Zhuang, H. L., Zhang, K., Cooper, V. R., Li, Q. and Lu, Y., "Chloride-Reinforced Carbon Nanofiber Host as Effective Polysulfide Traps in Lithium-Sulfur Batteries," Adv Sci (Weinh)., 3(12), 1600175(2016). https://doi.org/10.1002/advs.201600175
  21. Xia, Y., Fang, R., Xiao, Z., Huang, H., Gan, Y., Yan, R., Lu, X., Liang, C., Zhang, J., Tao, X. and Zhang, W., "Confining Sulfur in N-Doped Porous Carbon Microspheres Derived from Microalgaes for Advanced Lithium-Sulfur Batteries," ACS Appl Mater Interfaces., 9(28), 23782-23791(2017). https://doi.org/10.1021/acsami.7b05798
  22. Li, C., Sui, X.-L., Wang, Z.-B., Wang, Q. and Gu, D.-M., "3D N-Doped Graphene Nanomesh Foam for Long Cycle Life Lithium-Sulfur Battery," Chemical Engineering Journal., 326, 265-272(2017). https://doi.org/10.1016/j.cej.2017.05.154
  23. Wang, H., Yang, Y., Liang, Y., Robinson, J. T., Li, Y., Jackson, A., Cui, Y. and Dai, H., "Graphene-Wrapped Sulfur Particles as a Rechargeable Lithium-Sulfur Battery Cathode Material with High Capacity and Cycling Stability," Nano Lett., 11(7), 2644-2647 (2011). https://doi.org/10.1021/nl200658a
  24. Yan, L., Gao, X., Thomas, J. P., Ngai, J., Altounian, H., Leung, K. T., Meng, Y. and Li, Y., "Ionically Cross-Linked PEDOT:PSS as a Multi-Functional Conductive Binder for High-Performance Lithium-Sulfur Batteries," Sustainable Energy & Fuels., 2(7), 1574-1581(2018). https://doi.org/10.1039/c8se00167g
  25. Oschmann, B., Park, J., Kim, C., Char, K., Sung, Y.-E. and Zentel, R., "Copolymerization of Polythiophene and Sulfur to Improve the Electrochemical Performance in Lithium-Sulfur Batteries," Chemistry of Materials., 27(20), 7011-7017(2015). https://doi.org/10.1021/acs.chemmater.5b02317
  26. Chelladurai, K., Venkatachalam, P., Rengapillai, S., Liu, W.-R., Huang, C.-H. and Marimuthu, S., "Effect of Polyaniline on Sulfur/Sepiolite Composite Cathode for Lithium-Sulfur Batteries," Polymers., 12(4), 755(2020). https://doi.org/10.3390/polym12040755
  27. Zhao, X., Wang, J., Sun, X., Wei, K., Wang, W., Wang, A., Huang, Y. and Guan, Y., "Hierarchical Porous Carbon with Nano-MgO as Efficient Sulfur Species Micro-Reactors for Lithium-Sulfur Battery," Journal of The Electrochemical Society., 168(4), 040506 (2021). https://doi.org/10.1149/1945-7111/abed2a
  28. Ponraj, R., Kannan, A. G., Ahn, J. H. and Kim, D.-W., "Improvement of Cycling Performance of Lithium-Sulfur Batteries by Using Magnesium Oxide as a Functional Additive for Trapping Lithium Polysulfide," ACS Applied Materials & Interfaces., 8(6), 4000-4006(2016). https://doi.org/10.1021/acsami.5b11327
  29. Shao, H., Wang, W., Zhang, H., Wang, A., Chen, X. and Huang, Y., "Nano-TiO2 Decorated Carbon Coating on the Separator to Physically and Chemically Suppress the Shuttle Effect for Lithium-Sulfur Battery," Journal of Power Sources., 378, 537-545 (2018). https://doi.org/10.1016/j.jpowsour.2017.12.067
  30. Chen, H., Dong, W.-D., Xia, F.-J., Zhang, Y.-J., Yan, M., Song, J.-P., Zou, W., Liu, Y., Hu, Z.-Y., Liu, J., Li, Y., Wang, H.-E., Chen, L.-H. and Su, B.-L., "Hollow Nitrogen-Doped Carbon/ Sulfur@MnO2 Nanocomposite with Structural and Chemical Dual-Encapsulation for Lithium-Sulfur Battery," Chemical Engineering Journal., 381, 122746(2020). https://doi.org/10.1016/j.cej.2019.122746
  31. Guo, Y., Li, J., Pitcheri, R., Zhu, J., Wen, P. and Qiu, Y., "Electrospun Ti4O7/C Conductive Nanofibers as Interlayer for Lithium-Sulfur Batteries with Ultra Long Cycle Life and High-Rate Capability," Chemical Engineering Journal., 355, 390-398(2019). https://doi.org/10.1016/j.cej.2018.08.143
  32. Liu, Q., Jiang, Q., Jiang, L., Peng, J., Gao, Y., Duan, Z. and Lu, X., "Preparation of SnO2@rGO/CNTs/S Composite and Application for Lithium-Sulfur Battery Cathode Material," Applied Surface Science., 462, 393-398(2018). https://doi.org/10.1016/j.apsusc.2018.08.038
  33. Liu, M., Hou, J., Xiang, J., Shen, X., Luan, K. and Zhang, Y., "Effect of Non-Woven Al2O3/C Nanofibers as Functional Interlayer on Electrochemical Performance of Lithium-Sulfur Batteries," Journal of Nanoscience and Nanotechnology., 18(11), 7824-7829(2018). https://doi.org/10.1166/jnn.2018.15543
  34. Campbell, B., Bell, J., Bay, H. H., Favors, Z., Ionescu, R., Ozkan, C. S. and Ozkan, M., "SiO2-Coated Sulfur Particles with Mildly Reduced Graphene Oxide as a Cathode Material for Lithium-Sulfur Batteries," Nanoscale., 7(16), 7051-7055(2015). https://doi.org/10.1039/c4nr07663j
  35. Jia, X., Liu, B., Liu, J., Zhang, S., Sun, Z., He, X., Li, H., Wang, G. and Chang, H., "Fabrication of NiO-Carbon Nanotube/Sulfur Composites for Lithium-Sulfur Battery Application," RSC Advances., 11(18), 10753-10759(2021). https://doi.org/10.1039/D1RA00216C
  36. Ghosh, A., Manjunatha, R., Kumar, R. and Mitra, S., "A Facile Bottom-up Approach to Construct Hybrid Flexible Cathode Scaffold for High-Performance Lithium-Sulfur Batteries," ACS Applied Materials & Interfaces., 8(49), 33775-33785(2016). https://doi.org/10.1021/acsami.6b11180
  37. Mao, Y., Li, G., Guo, Y., Li, Z., Liang, C., Peng, X. and Lin, Z., "Foldable Interpenetrated Metal-Organic Frameworks/Carbon Nano-tubes Thin Film for Lithium-Sulfur Batteries," Nat Commun., 8, 14628(2017). https://doi.org/10.1038/ncomms14628
  38. Lee, W. Y., Jin, E. M., Cho, J. S., Kang, D.-W., Jin, B. and Jeong, S. M., "Freestanding Flexible Multilayered Sulfur-Carbon Nanotubes for Lithium-Sulfur Battery Cathodes," Energy., 212(2020).
  39. Chang, C.-H., Chung, S.-H. and Manthiram, A., "Highly Flexible, Freestanding Tandem Sulfur Cathodes for Foldable Li-S Batteries with a High Areal Capacity," Materials Horizons., 4(2), 249-258(2017). https://doi.org/10.1039/C6MH00426A
  40. Mentbayeva, A., Belgibayeva, A., Umirov, N., Zhang, Y., Taniguchi, I., Kurmanbayeva, I. and Bakenov, Z., "High Performance Freestanding Composite Cathode for Lithium-Sulfur Batteries," Electrochimica Acta., 217, 242-248(2016). https://doi.org/10.1016/j.electacta.2016.09.082
  41. Liu, J., Yuan, L., Yuan, K., Li, Z., Hao, Z., Xiang, J. Huang, Y., "SnO2 as a High-efficiency Polysulfide Trap in Lithium-sulfur Batteries," Nanoscale., 8, 13638(2016). https://doi.org/10.1039/c6nr02345b
  42. Seh, Z. W., Sun, Y., Zhang, Q. and Cui, Y., "Designing High-Energy Lithium-Sulfur Batteries," Chem Soc Rev., 45(20), 5605-5634(2016). https://doi.org/10.1039/c5cs00410a
  43. Chung, S. H. and Manthiram, A., "Bifunctional Separator with a Light-Weight Carbon-Coating for Dynamically and Statically Stable Lithium-Sulfur Batteries," Advanced Functional Materials., 24(33), 5299-5306(2014). https://doi.org/10.1002/adfm.201400845
  44. Yan, L., Luo, N., Kong, W., Luo, S., Wu, H., Jiang, K., Li, Q., Fan, S., Duan, W. and Wang, J., "Enhanced Performance of Lithium-Sulfur Batteries with an Ultrathin and Lightweight MoS2/Carbon Nanotube Interlayer," Journal of Power Sources., 389, 169-177(2018). https://doi.org/10.1016/j.jpowsour.2018.04.015
  45. Qu, L., Liu, P., Yi, Y., Wang, T., Yang, P., Tian, X., Li, M., Yang, B. and Dai, S., "Enhanced Cycling Performance for Lithium-Sulfur Batteries by a Laminated 2D g-C3N4 /Graphene Cathode Interlayer," ChemSusChem., 12(1), 213-223(2019). https://doi.org/10.1002/cssc.201802449
  46. Song, H., Suh, S., Park, H., Jang, D., Kim, J. and Kim, H. J., "Synthesis of Pompon-Like Zno Microspheres as Host Materials and the Catalytic Effects of Nonconductive Metal Oxides for Lithium-Sulfur Batteries," Journal of Industrial and Engineering Chemistry., 99, 309-316(2021). https://doi.org/10.1016/j.jiec.2021.04.033
  47. Zhang, Z., Li, Q., Zhang, K., Chen, W., Lai, Y. and Li, J., "Titanium-Dioxide-Grafted Carbon Paper with Immobilized Sulfur as a Flexible Free-Standing Cathode for Superior Lithium-Sulfur Batteries," Journal of Power Sources., 290, 159-167(2015). https://doi.org/10.1016/j.jpowsour.2015.05.010
  48. Singhal, R., Chung, S.-H., Manthiram, A. and Kalra, V., "A Free-Standing Carbon Nanofiber Interlayer for High-Performance Lithium-Sulfur Batteries," Journal of Materials Chemistry A., 3(8), 4530-4538(2015). https://doi.org/10.1039/C4TA06511E
  49. Li, M., Zhou, J., Zhou, J., Guo, C., Han, Y., Zhu, Y., Wang, G. and Qian, Y., "Ultrathin SnS2 Nanosheets as Robust Polysulfides Immobilizers for High Performance Lithium-Sulfur Batteries," Materials Research Bulletin., 96, 509-515(2017). https://doi.org/10.1016/j.materresbull.2017.05.016
  50. Mukkabla, R., Meduri, P., Deepa, M., Shivaprasad, S. M. and Ghosal, P., "Sulfur Enriched Carbon Nanotubols with a Poly(3,4-Ethylenedioxypyrrole) Coating as Cathodes for Long-Lasting Li-S Batteries," Journal of Power Sources., 342, 202-213(2017). https://doi.org/10.1016/j.jpowsour.2016.12.062
  51. Carbone, L., Verrelli, R., Gobet, M., Peng, J., Devany, M., Scrosati, B., Greenbaum, S. and Hassoun, J., "Insight on the Li2S Electrochemical Process in a Composite Configuration Electrode," New Journal of Chemistry., 40(3), 2935-2943(2016). https://doi.org/10.1039/c5nj03402g