• Title/Summary/Keyword: chaotic control

Search Result 188, Processing Time 0.025 seconds

Development of Robust Fuzzy Controller with Relaxed Stability Condition: Global Intelligent Digital Redesign Approach (완화된 안정도 조건을 갖는 강인한 디지털 퍼지 제어기 설계: 전역적 디지털 재설계 접근법)

  • Sung, Hwa-Chang;Kim, Jin-Kyu;Joo, Young-Hoon;Park, Jin-Bae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.5
    • /
    • pp.487-492
    • /
    • 2007
  • This paper presents the development of digital robust fuzzy controller for uncertain nonlinear systems. The proposed approach is based on the intelligent digital redesign(IDR) method with considering the relaxed stability condition of fuzzy control system. The term IDR in the concerned system is to convert an existing analog robust control into an equivalent digital counterpart in the sense of the state-matching. We shows that the IDR problem can be reduced to find the digital fuzzy gains minimizing the norm distance between the closed-loop states of the analog and digital robust control systems. Its constructive conditions are expressed as the linear matrix inequalities(LMIs) and thereby easily tractable by the convex optimization techniques. Based on the nonquadratic Lyapunov function, the robust stabilization conditions are given for the sampled-data fuzzy system, and hence less conservative. A numerical example, chaotic Lorentz system, is demonstrated to visualize the feasibility of the proposed methodology.

A study on the nonlinearity in bio-logical systems using approximate entropy and correlation dimension (근사엔트로피와 상관차원을 이용한 비선형 신호의 분석)

  • Lee, Hae-Jin;Choi, Won-Young;Cha, Kyung-Joon;Park, Moon-Il;Oh, Jae-Eung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.760-763
    • /
    • 2007
  • We studied how linear and nonlinear heart rate dynamics differ between normal fetuses and uncomplicated small-forgestational age (SGA) fetuses, aged 32-40 weeks' gestation. We analyzed each fetal heart rate time series for 20 min and quantified the complexity (nonlinear dynamics) of each fetal heart rate (FHR) time series by approximate entropy (ApEn) and correlation dimension (CD). The linear dynamics were analyzed by canonical correlation analysis (CCA). The ApEn and CD of the uncomplicated SGA fetuses were significantly lower than that of the normal fetuses in all three gestational periods (32-34, 35-37, 38-40 weeks). Canonical correlation ensemble in SGA fetuses is slightly higher than normal ones in all three gestational periods, especially at 35-37 weeks. Irregularity and complexity of the heart rate dynamics of SGA fetuses are lower than that of normal ones. Also, canonical ensemble in SGA fetuses is higher than in normal ones, suggesting that the FHR control system has multiple complex interactions. Along with the clear difference between the two groups' non-linear chaotic dynamics in FHR patterns, we clarified the hidden subtle differences in linearity (e.g. canonical ensemble). The decrease in non-linear dynamics may contribute to the increase in linear dynamics. The present statistical methodology can be readily and routinely utilized in Obstetrics and Gynecologic fields.

  • PDF

A Study on the Prediction of the Nonlinear Chaotic Time Series Using Genetic Algorithm based Fuzzy Neural Network (유전 알고리즘을 이용한 퍼지신경망의 시계열 예측에 관한 연구)

  • Park, In-Kyu
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.11 no.4
    • /
    • pp.91-97
    • /
    • 2011
  • In this paper we present an approach to the structure identification based on genetic algorithm and to the parameter identification by hybrid learning method in neuro-fuzzy-genetic hybrid system in order to predicate the Mackey-Glass Chaotic time series. In this scheme the basic idea consists of two steps. One is the construction of a fuzzy rule base for the partitioned input space via genetic algorithm, the other is the corresponding parameters of the fuzzy control rules adapted by the backpropagation algorithm. In an attempt to test the performance the proposed system, three patterns, x(t-3), x(t-6) and x(t-9), was prepared according to time interval. It was through lots of simulation proved that the initial small error of learning owed to the good structural identification via genetic algorithm. The performance was showed in Table 2.

Dynamic System Identification Using a Recurrent Compensatory Fuzzy Neural Network

  • Lee, Chi-Yung;Lin, Cheng-Jian;Chen, Cheng-Hung;Chang, Chun-Lung
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.5
    • /
    • pp.755-766
    • /
    • 2008
  • This study presents a recurrent compensatory fuzzy neural network (RCFNN) for dynamic system identification. The proposed RCFNN uses a compensatory fuzzy reasoning method, and has feedback connections added to the rule layer of the RCFNN. The compensatory fuzzy reasoning method can make the fuzzy logic system more effective, and the additional feedback connections can solve temporal problems as well. Moreover, an online learning algorithm is demonstrated to automatically construct the RCFNN. The RCFNN initially contains no rules. The rules are created and adapted as online learning proceeds via simultaneous structure and parameter learning. Structure learning is based on the measure of degree and parameter learning is based on the gradient descent algorithm. The simulation results from identifying dynamic systems demonstrate that the convergence speed of the proposed method exceeds that of conventional methods. Moreover, the number of adjustable parameters of the proposed method is less than the other recurrent methods.

OPTIMAL LINEAR CONTROL APPLIED TO A NON-IDEAL CAPSULE SYSTEM WITH UNCERTAIN PARAMETERS

  • ROEFERO, LUIZ GUSTAVO PEREIRA;CHAVARETTE, FABIO ROBERTO;OUTA, ROBERTO;MERIZIO, IGOR FELICIANI;MORO, THIAGO CARRETA;MISHRA, VISHNU NARAYAN
    • Journal of applied mathematics & informatics
    • /
    • v.40 no.1_2
    • /
    • pp.351-370
    • /
    • 2022
  • The design of mechanical structures aims to meet criteria, together with the safety of operators and lives in the vicinity of the equipment. Thus, there are several cases that meeting the desired specification causes the mechanical device to perform unstable and, sometimes, chaotic behavior. In these cases, control methods are applied in order to stabilize the device when in operation, aiming at the physical integrity of the component and the device operators. In this work, we will develop a study about the influence of a controller applied in a non-ideal capsule system operating with uncertain parameters, being non-existent in the literature. For this, two initial conditions were used: one that the capsule starts from rest and another that it is already in motion. Thus, the effectiveness of the controller can be assessed in both initial conditions, restricting the movement of the internal vibration-impact system to the capsule.

Generating Chaos from Discrete TS Fuzzy System

  • Zhong Li;Park, Jin-Bae;Joo, Young-Hoon
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2001.01a
    • /
    • pp.111-115
    • /
    • 2001
  • In this paper, a simple and systematic control design method is proposed for a discrete-time Takagi-Sugeno(TS) fuzzy system, which employs the parallel distributed compensation(PDC) to determine the structure of a fuzzy controller so as to mark all the Lyaunov exponents of the controlled TS fuzzy system strictly positive. This approach is proven to be mathematically rigorous for anticontrol of chaos for a TS fuzzy system in the sense that any given discrete-time TS fuzzy system can be made chaotic by the designed PDC controller along with the-operation. A numerical example is included to visualize the anticontrol effect.

  • PDF

Obstacle Avoidance Technique for Chaotic Mobile Robot (카오스 이동 로봇에서의 장애물 회피 기법)

  • Bae Young-chul;Kim Chun-suk
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.8
    • /
    • pp.1692-1699
    • /
    • 2004
  • In this paper, we propose a method to avoid obstacles that have unstable limit cycles in a chaos trajectory surface. We assume all obstacles in the chaos trajectory surface have a Van der Pol equation with an unstable limit cycle. We also show computer simulation results of Arnold equation, Chua's equation, Hyper-chaos equation, Hamilton equation and Lorenz chaos trajectories with one or more Van der Pol obstacles.

Evolvable Neural Networks for Time Series Prediction with Adaptive Learning Interval

  • Lee, Dong-Wook;Kong, Seong-G;Sim, Kwee-Bo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.920-924
    • /
    • 2005
  • This paper presents adaptive learning data of evolvable neural networks (ENNs) for time series prediction of nonlinear dynamic systems. ENNs are a special class of neural networks that adopt the concept of biological evolution as a mechanism of adaptation or learning. ENNs can adapt to an environment as well as changes in the environment. ENNs used in this paper are L-system and DNA coding based ENNs. The ENNs adopt the evolution of simultaneous network architecture and weights using indirect encoding. In general just previous data are used for training the predictor that predicts future data. However the characteristics of data and appropriate size of learning data are usually unknown. Therefore we propose adaptive change of learning data size to predict the future data effectively. In order to verify the effectiveness of our scheme, we apply it to chaotic time series predictions of Mackey-Glass data.

  • PDF

Qi-therapy, chaotic characteristics of peripheral blood pressure and biochemical variables

  • Lee, Myeong-Soo;Rim, Young-Hoon
    • Advances in Traditional Medicine
    • /
    • v.4 no.3
    • /
    • pp.215-218
    • /
    • 2004
  • We investigated the effect of Qi therapy (QT) on peripheral blood pressure (PBP), glucose, lactate dehydrogenase (LDH) and cortisol concentrations. Fourteen college students participated in receiving QT and placebo treatment. There were significant differences in embedding dimension of PBP. Plasma cortisol concentrations during QT were significantly lower than during control sessions (P

Understanding and application of the social system based on the system thinking : Focus on the cooperation model using Cellular Automata (시스템적 사고에 기반한 사회 시스템의 이해와 응용 : Cellular Automata를 이용한 협력모형을 중심으로)

  • 고길곤
    • Korean System Dynamics Review
    • /
    • v.1 no.1
    • /
    • pp.133-157
    • /
    • 2000
  • This paper deals with the social system from the point of system thinking consisting the fundamental construct of system dynamics. The Bertalanffy's general system theory, having been criticized because of its ambiguity, and the complex science theory, emerging system theory, are integrated by using the system thinking which is characterized with three concepts, 'feedback thinking', 'dynamic thinking', 'operational thinking'. In the integration, system thinking suggests the dynamic pattern of the social system have not only an equilibrium status but also complex status. The science of complexity gives an implication to system dynamics the important of the uncertainty and complexity if we interpret the social system as an open system. To show more concrete description, I simulate the cooperation model based on the iterated prisoner dilemma. The simulation results show the diverse patterns of cooperation and betrayal. Especially the sensitivity of initial payoff will cause the chaotic strategic landscapes as the game gose on. These results mean that we should not give the hasty prescription to control social system artificially. Because social system retains the self-organizing force in itself.

  • PDF