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Neural Network

Chi-Yung Lee, Cheng-Jian Lin*, Cheng-Hung Chen, and Chun-Lung Chang

Abstract: This study presents a recurrent compensatory fuzzy neural network (RCFNN) for
dynamic system identification. The proposed RCFNN uses a compensatory fuzzy reasoning
method, and has feedback connections added to the rule layer of the RCFNN. The compensatory
fuzzy reasoning method can make the fuzzy logic system more effective, and the additional
feedback connections can solve temporal problems as well. Moreover, an online learning
algorithm is demonstrated to automatically construct the RCFNN. The RCFNN initially contains
no rules. The rules are created and adapted as online learning proceeds via simultaneous structure
and parameter learning. Structure learning is based on the measure of degree and parameter
learning is based on the gradient descent algorithm. The simulation results from identifying
dynamic systems demonstrate that the convergence speed of the proposed method exceeds that of
conventional methods. Moreover, the number of adjustable parameters of the proposed method is
less than the other recurrent methods.
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1. INTRODUCTION

In artificial intelligence, fuzzy models can be im-
plemented using fuzzy neural networks. Fuzzy neural
networks have emerged as a highly effective approach
to solving many engineering problems [1-5]. However,
fuzzy neural networks are restricted in that their
application domain is limited to static problems owing
to their internal feedforward network structure,
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causing inefficiency for temporal problems. Conse-
quently, a recurrent fuzzy neural network must be
developed to solve temporal problems.

For a dynamic system, the output is a function of
past inputs or past outputs or both; identification of
dynamic systems is less direct than for static systems.
To address temporal problems involving dynamic
systems, the conventionally adopted model is a neural
network [6] or a fuzzy neural network [2-5]. If a
feedforward network is adopted for this task, the
number of delayed inputs and outputs should be
known in advance. However, this approach is limited
in that the precise order of the dynamic system is
generally unknown. Recurrent networks for process-
ing dynamic systems can be used to solve this
problem. These networks have received increasing
interest in recent years [7-9]. Juang and Lin [7]
proposed a recurrent self-organizing neural fuzzy
inference network (RSONFIN), which uses Mamdani-
type fuzzy rule, with online supervised learning ability.
Lin and Wai [8] applied the recurrent-fuzzy -neural
network (RFNN), which involves dynamic elements
in the form of feedback connections as internal memo-
ries. A TSK-type recurrent fuzzy network is proposed
for a supervised learning environment (TRFN-S) with
available gradient information by Juang [9]. However,
recurrent networks deal with fuzzy membership
functions and defuzzification schemes for applications
by using learning algorithms to adjust the parameters
of fuzzy membership functions and defuzzification
functions. Unfortunately, for optimal fuzzy logic rea-
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soning and fuzzy operators, only static fuzzy operators
are widely used for fuzzy reasoning. Because the
conventional fuzzy neural network can only adjust
fuzzy membership functions by using fixed fuzzy
operations, for example Min and Max, intuitively it is
not adaptive for a complete fuzzy system to employ
an unchangeable pair of fuzzy operators. Zimmer-
mann [10] was the first to define the essence of
compensatory operations. Zhang and Kandel [11]
proposed more extensive compensatory operations
based on the pessimistic and optimistic operations.
Since the compensatory parameters in a fuzzy neural
network are physically meaningful, these compen-
satory parameters can be initialized using a heuristic
algorithm to accelerate system training. The compen-
satory fuzzy neural network [14] with adjustable
fuzzy reasoning is more effective than the conven-
tional fuzzy neural network with nonadjustable fuzzy
reasoning [3]. Recently, many researchers [12-15]
have successfully applied the compensatory operation
to fuzzy systems. Therefore, this study adopts a
compensatory fuzzy neural network that can not only
adaptively adjust fuzzy membership functions but also
dynamically adjust the compensatory operators.

This study presents a recurrent compensatory fuzzy
neural network (RCFNN). The RCFNN is a recurrent
multilayer connectionist network for fuzzy reasoning
and can be constructed from a set of fuzzy rules.
Simultaneously, the compensatory fuzzy inference
method uses adaptive fuzzy reasoning of fuzzy neural
networks to increase the adaptability of the fuzzy
logic system. An on-line learning algorithm is also
proposed to automatically construct the RCFNN. The
proposed learning algorithm includes structure learn-
ing and parameter learning. The structure learning
algorithm determines whether to add a new node to
satisfy the fuzzy partition of the input data. Moreover,
the gradient descent learning algorithm is used to tune
the free parameters in the RCFNN to minimize an
output cost function.

The proposed RCFNN model possesses four
advantages. First, it does not require assistance from a
human expert, and its structure is obtained from the
input data. Second, it adopts compensatory operators.
Because the conventional fuzzy neural network can
only adjust fuzzy membership functions by using
fixed fuzzy operations such as, MIN and MAX, the
RCFNN model with adjustable fuzzy reasoning is
more effective than the conventional fuzzy neural
network. Third, it converges rapidly, and requires few
tuning parameters. Fourth, it can effectively address
temporal problems when identifying a dynamic
system.

2. COMPENSATORY OPERATION

Zhang and Kandel [11] recently proposed compen-

satory operations based on the pessimistic and opti-
mistic operations. The pessimistic operation could
map the inputs x; to the pessimistic output by making
a conservative decision regarding the pessimistic
situation or for even the worst case situation. For
example, p(x;, X2, ..., Xxy)=MIN(x;, x;,..., xn) or I1 x;. In
fact, the f-norm fuzzy operation is a pessimistic
operation.

The optimistic operation can map the inputs xi to
the optimistic output by making an optimistic decision
regarding the optimistic situation or even the best case.
For example, o(x;, xa,..., xy)=MAX(x}, x3..., xn). In
fact, the f-conorm fuzzy operation is an optimistic
operation. The compensatory operation can map the
pessimistic input x1 and the optimistic input x; to
make a relatively compromised decision for the
situation between the worst and best cases. For

example, c(x),x,)= x11'7 x}, where ye[0,1] is
called the compensatory degree.
The general fuzzy if-then rule is as follows:
Rule—j:IF X is4; and .....and x is Ay;

THEN i W
y is wy,

where x;and y denote the input and output variables,
respectively; 4; denotes the linguistic term of the

precondition part with membership function u a3

w. represents the consequent part; i is the input

J
dimension, i =1,...N; N is the number of existing
dimensions; j denotes the number of rules, j/=1,.,R;
and R represents the number of existing rules.

For an input fuzzy set A'j in U c R, the jth fuzzy

rule (1) can generate an output fuzzy set w'/- in
vc R by using the sup-dot composition
H, =Sup [/"Aljx~--xAM~>bj (x,7)e Hy (®)] (2)

S xeU

where x=(x;,x3,...,Xy5)- yAle,,,XAM(g) is defined

using a compensatory operation
]_}/ . ¥
IuAl‘}XXAN}(.JE)z(u]) j(vj) ]7 (3)

where y; €[0,1] is a compensatory degree. The pes-

simistic operation (4) and the optimistic operation (5)
are as follows:

N
u;= H/UAij (%) (4)
i=1

W

N
V= [1;[ Hay ()] 5)
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For simplicity, the above can be rewritten as
N 7j
—y 47
Hay pxex dy; (x)=[l—[,uAij ()], ’ A (6)
- =

Since u 4 (x;)=1 for the singleton fuzzifier and
Hy {(y)=1, then according to (2):
J

. 71/
Vit/N

N 1
ﬂb'j = [g Hy, ()] (7N

Therefore, the fuzzy if-then rule with compensatory
degree ¥ can be rewritten as follows:

Rule~j:[IFx is4; and ...... and x, is 4y; 7
THEN yisw;.

8

3. STRUCTURE OF THE RECURRENT
COMPENSATORY FUZZY NEURAL
NETWORK

This section describes the proposed recurrent com-
pensatory fuzzy neural network (RCFNN). Recently,
Lin and Wai [8] proposed a model, called the
recurrent fuzzy neural network (RFNN) architecture.
The model presented here resembles the RFNN with
the only difference being in the rule layer. Layer three
of the RFNN uses the product operator, while layer
three of the proposed model uses the compensatory
operator.

The structure of the proposed RCFNN is illustrated
in Fig. 1, and is systematized into N input variables,
R-term nodes for each input variable, M output nodes,
and NxR membership function nodes. The RCFNN
comprises four layers and Rx(Nx2+3+M) parameters,
where R denotes the number of existing rules. Nodes
in layer 1 are input nodes, which represent input
variables. Moreover, nodes in layer 2 are called
linguistic nodes and act as membership functions to
express the input fuzzy linguistic variables. Nodes in
this layer are used to calculate the Gaussian

Output layer

Rule layer

. ] Linguistic laye

Input fayer

H 6,
(0T bt bt

Fig. 1. Structure of the proposed RCFNN.

membership values. Each node in layer 3 is called a
compensatory rule node. Furthermore, nodes in layer
3 equal the number of compensatory fuzzy sets corre-
sponding to each external linguistic input variable.
Links before layer 3 represent the rule preconditions,
and links after layer 3 represent the consequences of
the rule nodes. Nodes in layer 4 are called output
nodes, where each node represents an individual
system output. The links between layers 3 and 4 are
connected via the weighting values w;. Each node in
the feedback layer is embedded in the RCFNN by
adding feedback connections to layer 3.

The structure of the RCFNN is shown in Fig. 1, in
which 4; by a Gaussian-type membership function,
Hay (x;), defined by

Ix, —m,; 2
My (x) =expq———3"—1, ©)
i
where my and oy are, respectively, the mean and
variance of the Gaussian membership function of the
jth term of the ith input variable x;. Defining the
number and the locations of the membership functions
leads to a partition of the premise space
N=N1 X...XNN.

The collection of fuzzy sets Ajz{Alj,...,ANj}

pertaining to the premise part of Rule-j forms a fuzzy
region 4;that can be regarded as a multi-dimensional
fuzzy set whose membership function is determined
by

N
ta, (x(0) = [ T4, 000, (10)
i=1

The above equation provides the degree to which a
particular input vector x(f) belongs to the fuzzy region
A;. For the internal variable s;, the following sigmoid
function is used:

|

“Trew(h)’ (D

S

where h; = p 4 (x(#-1))-6; is the feedback units

acting as memory elements, and 6, is the feedback

weight. Furthermore, due to the compensatory
operation of the grades of the membership functions

Ha; (x;(r)) in (10), for simplicity, we can rewrite it
as:

’
A

N
py ) = T gy -5} (12)
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Therefore, we can rewrite the fuzzy if-then rule as
follows:

Rule— j:[IF (1) is 4; and ......

and xy (1) is Ay; and ; (¢) is G/
THEN y'(t+1)is w; and h,(t +1)is 6;,

(13)
where Rulej denotes the jth fuzzy rule,
x(t)=[x1(t),x2(t),...,xN(t)]T is the input vector to the
model at time ¢ with x;(f)eN; cR(i=L..,N),
h;(f) is the internal variable at time 7, y (tt1) is the

jth output of the local model for Rule-j, 4;and G are
fuzzy sets, w; is the consequent part of Rule-j, and 6,

is the fuzzy singleton. The output of the model at time
tis y(f) and is labeled 2. It is the sum of all incoming
signals:

R
YO =ty G0)-w;, (14)
j=1
where the weight w; is the output action strength of
the output associated with the jth rule.

Because (14) has a similar form to [16], which is a
universal approximator, it is easy to prove the
universal approximation theorem of (14), as follows.

For any real continuous function g in a compact set

UcRY and for any given arbitrary £ >0, a model
exists such that

sug” fx)- g(x)” <é.

Here ||0|[ can be any norm.

To summarize, the overall representation of the
input x and the output y is
1—7;*7%

N A ”2
Hexp{_ (x(6) 2m” ]

i=1 Ojj
1+ exp[-u}) (x;(t - 1)) - 6;]

R
y(1)= ZWJ' :
=

(15)
where yjzcjz/(cj2+dj2) is the compensatory
degree, my, oy 6, c, d; and w; are the tuning
parameters, and

'-yﬁy%

Ojj

N ; f=1)= » 2
gexp[_(x( )=m) }

O (x(r—1) =
uUj (x(t-1) 1+exp[_u§3)(xi(t—2))-9j]

(16)

Explicitly, using the RCFNN, the same inputs yield
different outputs at different times. Obviously, (16)
can be demonstrated to be a universal approximator
by using the same method in [16].

4. LEARNING ALGORITHMS OF RCFNN

This section describes an on-line learning algorithm
for constructing the RCFNN. The learning algorithm
comprises both structure and parameter learning
phases. Fig. 2 illustrates the flow diagram of the
learning scheme for the RCFNN model. The structure
learning algorithm is based on the measure of degree
to determine the number of fuzzy rules. The parameter
learning is based on supervised learning algorithms.
Meanwhile, the gradient descent algorithm minimizes
a given cost function by adjusting the weights in the
consequent part, the weights of the feedback, the
compensatory degree, and the parameters of the
membership functions. Initially, the network contains
no node except the input-output nodes; that is, there
are no rules and memberships. The rule nodes are
created dynamically and automatically as learning
proceeds when online incoming training data are
received and when the structure and parameter
learning processes are performed. The details of the
structure and parameter learning phases are described
in the rest of this section.

4.1. Structure learning

Structure learning initially attempts to determine
whether to extract a new rule from the training data,
and also to determine the number of fuzzy sets in the
universal of discourse of each input variable, since
one cluster in the input space corresponds to one
potential fuzzy logic rule, with m; and g; representing
the center and width, respectively, of the Gaussian
membership function. For each incoming pattern x,
the strength of rule firing can be interpreted as the
degree to which the incoming pattern belongs to the
corresponding cluster. To improve computational
efficiency, a compensatory operator of the firing

strength obtained from u§-3) (x(t)) can be directly

. 1_,/.!%
F =) (x(1) = HH%&”(%)}%] (17)
i=1

used as the degree measure

where F; €[0,1]. Using this degree measure, the

following criterion can be obtained for generating a
new fuzzy rule for new incoming data, described as
follows. Find the maximum degree F,,..

Fray = F;
max lﬁ?sa;?((t) I (18)
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where R(f) is the number of existing rules at time . If
a -

max <F, then a new rule is generated, where

Fe (0,1) is a prespecified threshold that should
decay when the learning process limits the size of the
RCFNN. We adopt the decay method (1-i/N )F ,

where N is the prespecified number of training epoch
and i is ith training epoch when the learning process.

The threshold parameter F is an important parameter
in the structure learning step. The threshold value is
set to between zero and one. A low threshold value
leads to the learning of coarse clusters (that is, less
rules are generated), whereas a high threshold value
leads to the learning of fine clusters (that is, more
rules are generated). If the threshold value equals zero,
all the training data belong to the same cluster in the
input space. After generating a new rule, the next step
is to assign initial center and width according to (19)
and (20) for the new Gaussian membership function.
Since the goal of this study is to minimize an
objective function, and since the center and width of
Gaussian membership function are all adjustable later
in the parameter learning, the center and width for the
new Gaussian membership function are set as follows:

ij(m)) -x, (19)

=0, 0)
where x; denotes the new data and g;,; represents a
prespecified constant. Therefore, the selection of the
threshold value F and the prespecified constant o,
critically influence the simulation results, and the
threshold value is based on practical experimentation
or trial-and-error testing.

Since the generation of a membership function
corresponds to the generation of a new fuzzy rule, the

R
compensatory degree N

J ) , hamely,

(Rie+1y) ( N2 e (Raany) 2 (Rry) 32
7 (t+1) =(c; R(z+1)) f(c; )y +(d Y2 the

weight of the feedback Hﬁ.R(”” ) , and the weight of

the link wﬁ-R(’”)) associated with a new fuzzy rule
have to be determined. Generally, the compensatory

degree cﬁ-R('“)),d(-R(””), the weight of the feedback

Hj(-R(’”)) , and the weight of the link wﬁ»R(”])) are
selected with random values in [-1,1].

The whole algorithm for the generation of new
fuzzy rules as well as of fuzzy sets in each input
variable is as follows. Suppose no rules initially exist:

Step 1: IF x; is the first incoming pattern THEN do

{Generate a new rule

with center m;;=x;, width ¢,;=0;,;, compensatory

degree ¢/=random, d;=random, weight of
feedback 6, = random , weight of link w,=random

where o;,; is a prespecified constant. }
Step 2: ELSE for each newly incoming x;, do

{Find Fp, = max F;
ISJSR(t)

IF Fppy 2F

do nothing
ELSE
{
R(t+1) = R() +1
generate a new rule
with center mlf(”l) =x;, width

Rivry _
O = Oinit »

compensatory degree cf(””

df(’ N = random, weight of feedback

= random ,

H]&’ N = random, weight of link

wf(’”) = random

where o, is a prespecified constant.}

}

4.2. Parameter learning body

After adjusting the network structure based on the
current training pattern, the network then enters the
parameter learning phase to optimize the network
parameters based on the same training pattern. Notice
that the following parameter learning is performed on
the whole network after structure learning, regardless
of whether the nodes (links) are newly added or
originally existed. Since the learning process involves
the determination of the vector which minimizes a
given cost function, the gradient of the cost function
with respect to the vector is calculated, and the vector
is adjusted along the negative gradient. When the
single output case is considered for clarity, the goal is
to minimize the cost function E(¢), which is defined as

E(r)=%[yd(t>—y(t>]2, @1

where yd(t) denotes the desired output and ()
represents the current output for each discrete time ¢.
During each training cycle, beginning at the input
variables, a forward pass is used to calculate the
activity of all the current outputs y(f).

When the gradient descent learning algorithm is
used, the weighting vector of the RCFNN is adjusted
such that the error defined in (21) is below the desired
threshold value after a given number of training cycles.
The well-known gradient descent learning algorithm
can be written briefly as
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W(t+1)=W({)+AW ()
(250, &

ow

where, in this case, 77 and W represent the learning
rate and tuning parameters of the RCFNN, respective-
ly. Let e(r)=y()? - y(t) and W =[m,c,0,c,d,w]’
represent the training error and weighting vector of
the RCFNN, respectively. The gradient of error £(.) in
(21) with respect to an arbitrary weighting vector W
then is

aE(t)
ow

e 2 ay(’) 23)

The error term for each layer is first computed to form
recursive applications of the chain rule. The
parameters in the corresponding layers then are
adjusted. With the RCFNN and the cost function as

defined in (21), the update rule for w;, c;, d;, and 6;

J
can be derived, as follows:
0
wj(t+1)=wj(t)—77wai—(;), (24)
ct+)=¢;0-1. 22, 5)
J
OE(1)
OE(t)
QJ(HI):QJ‘U)_’]@M’ (27)
where
PO - o)y P,
J
OE(r) _ e)
G -0 )
N 2
. @Dy oo L [L )| 2e)d=()
lnLl;Ilul] (x;) S]} (N lj [(cz(t)+d2(t))2]’
aaE;J’) ——e(®)-wj-uDx(0)
2
il E @y L1} o_2%0do |
n{]_[u (X) S]} {N j[ (62([)+d2(t))2
3 (€))
A s R s I
80 au§.3) 89j 89]'
where
5u(3)

e
_1_

v

( ) _7j+ % aSj

Hu (x;) |5 '871-
vi
=(-y;+=)

N
[fpeaf

and the partial derivative 0h Ji / o6 i is calculated as

oh; as ;
—]=u§-3)(t—1)+9j -a—;;(t—l)-ulg.z)(t—l).

o
I

s )2
( SJ) 69]-

96

Hence, we have the following recursive form:

0s ;
—ae—é(t)zsj(t)'(l—sj(t))-

(3)@ D+, u(2)(t 1)- aj =

J

Similarly, the update laws for m; and o;; are

my @+ 1) = my () 7, 20 28)
6m,-j
CE()
O'g(t-l-l):()'ij(t)— - 60—11 , (29)
where
(3) (3)
EW) _ o v M
oy~ Ty O
ij a-uj y y
3 3
EW) _ oo v M %
P A N A wj G
ij ou ; jj jj
where
}/-
1_}/.+_]
3 2 J'N
o) N | (xi-my)
L= [exp| 0 |5
My oMy lii=1 o

N 2\ x; —my; 0s i
Y @] 2 y) i (2)

and the partial derivative Os; / Omy; is calculated as
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0s ; oh;
J _ Y A _

am,.j_sf (1-5/) 6m,~j_sj (1-3)

0s ;

J (2)
2:x; —m
+5;(t =) ud (¢ =1)- (’2 ”)
Oij

and
8u5.3) N

and the partial derivative 0s; /80 is

Os ; Oh;
J J
:S.- l_s '_—ZS" 1_S
J J J J
2 2y )
Os ;
<. . t—1 u(z)
J [60’1_‘]'( ) y
2
2Ax: —m.:
2 i )
(¢ =1)-u (£ -1). —(~3—)
%y
Coom D
jii’ﬂ’f‘l“a"un 1 Structure learning
5 v
“"{j‘%//i--' ;

Generak & new rule

|
Paramcter learning

=

one?
o Yos

- ¥

{_ EBnd

Fig. 2. Flow diagram of the structure/parameter learn-
ing for the RCFNN model.

5. SIMULATION RESULTS

This study evaluated the performance of the
RCFNN for temporal problems. This section presents
several examples and performance contrasts with
some other recurrent fuzzy neural networks. The first
problem involves identifying a nonlinear dynamic
system, while the second problem involves identifying
a chaotic system. In the following simulations, the
parameters and number of training epochs were
determined based on the desired result.

5.1. Identification of dynamic system

The systems to be identified are dynamic systems
whose outputs are functions of past inputs and outputs.
For this dynamic system identification, since a
recurrent network is used, only the current states of
the system and control signal are used as network
inputs. The model is applied in the following two
identification problems.

Example 1: In this example, a nonlinear plant with
multiple time delays was guided using the following

differential equation:
yp(t+1)=f(yp(t)9 yp(t_l)a (30)
yp(t - 2)3 up(t)s up (t - 1))a

where
XXy X35 (x5 = 1)+ x4

X[3Xy,X3,X4,X5) =
J (x4, %3, X3, X4, X5) I

In this study, the current output of the plant depends
on three previous outputs and two previous inputs. In
[6], the feedforward neural network, with five input
nodes for feeding, the appropriate past values of y,
and u were used. In the proposed model, only two
input values, y,(¢) and u(f), were fed to the RCFNN to
determine the output y,(#+1). The training inputs were
independent and had an identically distributed (i.i.d.)
uniform sequence over [-2,2] for about half of the
training time and a single sinusoid signal given by
1.05sin(nt/45) for the remainder of the training time.
These 900 training data were not repeated; that is,
different training sets were used for each epoch. The
test input signal u(¢), as shown in the equation below,
was used to determine the identification results.

sin(f'—’-j 0<t<250
25

1.0 250 <t < 500
1.0 500 <t <750

u(t)=
0.3sin (”—’j +0.1sin (1’—’)
25 32

+0.6sin (’;—0’) 750 < <1000.
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Ten epochs were used for training the RCFNN. The
learning rate 17,,= 11.= 4= Nm=1 o= 1l 0=0.05, the
prespecified o;,; = 0.2, and the prespecified threshold

F=10"* were chosen. After training, the final root-
mean-square error (rms error) was 0.0011, and three
fuzzy logic rules were generated. These designed
three fuzzy IF-THEN rules of the recurrent
compensatory fuzzy neural network with a compen-
satory degree y are described below
Rule 1:
IF [ u(f) is p(-0.0313,0.3149) and 0y(tz) is
£(0.1539, 0.7908) and A(f) is G]*~"**
THEN yp(t+1) is 0.4686 and h(z+1) is 0.4686
Rule 2:
IF [ u(r) is u(0.6041,0.3120) and y(#) is
1(1.0319, 0.4989) and A(7) is G*"**
THEN y(¢+1) is 0.9018 and h(#+1) is-0.5938
Rule 3:
IF [ u(f) is £(-1.3234,0.6565) and y(¢) is
1(-1.1754, 0.7360) and A(1) is G]****
THEN p(++1) is —1.3784 and A(r+1) is
0.0816
Fig. 3(a) shows the distribution of some of the
training patterns and the final assignment of the rules
in the [u(¢),y(f)] plane. This is due to the parameter
learning process, which adjusts the center and width
of each Gaussian membership function at each time
step to minimize the output cost function. Fig. 3(a)
shows the membership functions in the u(¢f) and y(¢)
dimensions. Moreover, Fig. 3(b) illustrates the
distribution of the testing patterns on the y(¢) and u(?)
dimensions. Additionally, Fig. 3(c) shows results
using the RCFNN for identification. The analytical
results demonstrate that the RCFNN model can
achieve perfect identification. Fig. 3(d) illustrates the
error between the desired output and the RCFNN
output. Moreover, Fig. 3(e) shows the leaming curves
of the RCFNN, RSONFIN [7], RFNN [8], and TRFN-
S [9] models. In the figure, the proposed model
converges faster than other models. In many practical
cases, the plant being identified is noisy. Internal plant
noise appears at the plant output and is commonly
represented as an additive noise. In the present
simulations, noise is white Gaussian distributed

with crez =0.1. Fig. 4(a) plots the noise-corrupted

signal. Moreover, Fig. 4(b) shows a trace of the
recovered signal sequence.

This study also compared the performance of the
proposed model with that of other existing recurrent
methods (RSONFIN [7], RENN [8], TRFN-S [9]).
The performance indices considered included the
numbers of adjustable parameters, the rms error
(training and testing), and the numbers of epochs.
Table 1 lists the comparison results. As listed in Table
1, the numbers of adjustable parameters and the rms
error of the RCFNN are smaller than other recurrent

25

(a) The input training patterns and the final assign-
ment of rules for the distribution of the member-
ship functions on the y(¢) and u(¢) dimensions.
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(b) The distribution of the testing patterns on the y(f)
and u(¢) dimensions.
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(¢) The outputs of the plant and the RCFNN.
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(d) The error between the RCFNN output and the
desired output.
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\ == RFNN

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

(e) The learning curves of the RCFNN, RSONFIN
[7], the RENN [8] and the TRFN-S [9].

Fig. 3. Simulation results of the RCFNN for dynamic
system identification in Examplel.
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(b) Output of the plant and the identification RCFNN
for the same input.

Fig. 4. Simulation results in the noisy case of the
RCFNN for dynamic system identification.

Table 1. Performance comparison of various recurrent
methods with respect to the identification
problem in Example 1.

RSONFIN| RFNN | TREN-S
RCFNN
[7] [8] [9]
Parameters 24 36 24 33
RMS error| o 3011 | 0.0248 | 0.0030 | 0.0084
(training)
RMS error} o 3519 | 0.0780 | 0.0033 | 0.0346
(testing)
Epochs 10 10 10 10

models under the same training epochs.
Example 2: Next consider the following dynamic
plant with longer input delays:

Yt +1) =072y (1) +0.025y 5 (¢t = Du(t = 1)
+0.01u% (1= 2)+0.2u(r - 3).

This plant is the same as that used in [17]. The
current output of the plant depends on two previous
outputs and three previous inputs. As in example 1,
the identification model, where only two external
input values were fed to the input of RCFNN. The
training data and time steps were the same as in
Example 1. Ten epochs were used in training the
RCFNN. The leamning rate ,=nN.=Ra=Om=1N ¢
=1 ¢=0.05, the prespecified o;,;; = 0.2, and the

prespecified threshold F =107 were chosen. After
training, the final rms error was 0.0005, and three
fuzzy logic rules were generated. These designed
three rules with a compensatory degree are
Rule 1:
IF [u(r) is u(0.1786,0.4733) and y(f) is

£4(0.0115,0.2374) and h(t) is G1**'*
THEN y(t+1) is 0.4047 and A(r+1) is 0.5621
Rule 2:
IF [u(f) is u(0.9473,-0.4273) and y(r) is
£1(1.0411,1.1604) and h(z) is G]*7**
THEN y(r+1) is 1.0166 and h(++1) is 0.4766
Rule 3:
IF [u(?) is u(-0.7305,0.3594) and y(¢) is
14(-0.8313,0.8858) and h(z) is G]"**"!
THEN p(r+1) is —0.7550 and h(+1) is
0.7186

The check signal used in Example 1 is adopted for
checking the identified result. Fig. 5(a) shows the
distribution of input training patterns and the final
task of the rules in the [u(?),)(¢)] plane. Fig. 5(a)
shows the membership functions in the u(f) and y(¢)
dimensions. Moreover, Fig. 5(b) shows the
distribution of the testing patterns in the y(#) and u(?)
dimensions. Additionally, Fig. 5(c) shows the outputs
of the plant and the RCFNN for the testing patterns.
The analytical results also show the perfect identifica-
tion capability of the RCFNN model. Moreover, Fig.
5(d) illustrates the error between the desired output
and the RCFNN output. Meanwhile, Fig. 5(e) shows
the learning curve of the RCFNN, the RSONFIN [7],
the RFNN [8], and the TRFN-S [9]. Simultaneously,
the plant additive noise was also identified by
RCFNN. Fig. 6(a) illustrates the corrupted signal.
Finally, Fig. 6(b) shows the recovered signal using the
RCFNN after convergence.

This study compared the performance of the
proposed model with that of other existing recurrent
methods (RSONFIN [7], RFNN [8], and TRFN-S [9]).
This study demonstrates that the proposed network
outperforms its comparing rivals, and exhibits a
smaller rms error for the same learning epochs. We
can find that the required parameters of the proposed
method are less than the parameter number of the
other methods. Obviously, as shown in Table 2, the
RCFNN is more effective than other existing recurrent
networks.

5.2. Identification of a chaotic system

This subsection discusses a typical discrete time
chaotic system, which is easier to describe. Successful
simulation results are then presented by training the
RCFNN model. Performance comparisons with the
FNN [5], RSONFIN [7], RFNN [8], and TRFN-S [9]
are presented in this subsection to verify the
performance of the RCFNN for temporal problems.

Example 3: The discrete time Henon system is
repeatedly used in the study of chaotic dynamics and
is not too simple in the sense that it is of the second
order with one delay and two parameters [18]. This
chaotic system is described by
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[7],the RFNN [8] and the TRFN-S [9].

Fig. 5. Simulation results of the RCFNN for nonlinear
system identification in Example2.
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(b) Output of the plant and the identification RCFNN.

Fig. 6. Simulation results in the noisy case of the
RCFNN for nonlinear system identification.

Table 2. Performance comparison of various recurrent
methods with respect to the identification
problem in Example 2.

RSONFIN| RENN [TREN-S
RCFNN
[7] (8] [9]
Parameters 24 49 24 33
RMSerror 4 3505 | 0.0300 | 0.0014 | 0.0067
(training)
RMS error | 4015 | 0.0600 | 0.0026 | 0.0313
(testing)
Epochs 10 10 10 10
= » 2 . —
y(t+)==P-y°()+Q-y(t-1)+1.0, (32)
fort=1,2,...,

which, with P=1.4 and (0=0.3, produces a chaotic
strange attractor, as shown in Fig. 7(a). For this
training, the input of the RCFNN was y(#-1) and the
output was (). We first randomly took the training
data (1000 pairs) from a system over the interval [-
1.5,1.5]. Then the RCFNN was used to approximate
the chaotic system.

In applying the RCFNN to this example, this study
used only 100 epochs. Here, the initial point was
[(1)3(0)]'=[0.4,0.4]". The learning rate 77,,= 7.~ 1l
7~ Om=1 o= 1 6=0.05, the prespecified ;,;=0.1, and

the prespecified threshold F= 10 were chosen.
After training, eight fuzzy logic rules were generated.
The phase plane of this chaotic system after training
for the FNN [5] and the RCFNN are shown in Fig.
7(b) and Fig. 7(c), respectively. Simulation results in
Fig, 7(b), indicate that the FNN is inappropriate for
chaotic dynamics system because of its static mapping.
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(b) Result of identification using the FNN for the
chaotic system.
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(c) Result of identification using the RCFNN for the
chaotic system.

Fig. 7. Simulation results for identification of a
chaotic system.

Table 3. Performance comparison of various methods
with respect to the chaotic system identifica-
tion problem in Example 3.

RSONFIN[RFNN|[TRFN-| FNN
RCFNN
[7] [8] | S[9]| I[5]
Number of] 3 3 R R R
rules
RMS error| 0034 | 0.0755 10.01410.0306]0.1338
(train)
RMS errorl 10361 0.0927 10.0145(0.0341]0.1577
(test)
Epochs 100 100 100 | 100 | 100

The comparison of performance in Table 3 reveals
that the rms error (training and testing) of the

proposed model is smaller than the RSONFIN model
[7], the RFNN model [8], the TRFN-S model [9] and
the FNN model [5] under the same fuzzy rules and
training epochs.

6. CONCLUSIONS

This study presents a recurrent compensatory fuzzy
neural network for identifying dynamic systems. The
RCFNN is a recurrent multilayered connectionist
network for realizing fuzzy inference using dynamic
fuzzy rules. The network comprises four layers,
including two hidden layers and a feedback network.
An on-line learning algorithm that consists of
structure learning and parameter learning is also
proposed to automatically construct the RCFNN. The
structure learning algorithm is based on the measure
of degree and determines whether or not to add a new
node to satisfy the fuzzy partition of the input data.
Moreover, the gradient descent learning algorithm is
used for tuning input membership functions.
Simulation results demonstrate the effectiveness of the
proposed RCFNN model in resolving many temporal
problems.
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