Obstacle Avoidance Technique for Chaotic Mobile Robot

카오스 이동 로봇에서의 장애물 회피 기법

  • 배영철 (여수대학교 공과대학 전자통신전기공학부) ;
  • 김천석 (여수대학교 공과대학 전자통신전기공학부)
  • Published : 2004.12.01

Abstract

In this paper, we propose a method to avoid obstacles that have unstable limit cycles in a chaos trajectory surface. We assume all obstacles in the chaos trajectory surface have a Van der Pol equation with an unstable limit cycle. We also show computer simulation results of Arnold equation, Chua's equation, Hyper-chaos equation, Hamilton equation and Lorenz chaos trajectories with one or more Van der Pol obstacles.

본 논문에서는 카오스 궤적 표면에서 불안정한 리미트 사이클을 가지는 장애물 회피 기법을 제안하였다. 카오스 궤적 표면의 모든 장애물은 불안정한 리미트 사이클을 가지는 Van der Pol 방정식으로 가정하였다. 하나 또는 몇 개의 Van der Pol 장애물과 고정 장애물을 로봇이 피해가는 과정을 결과로 나타내었다.

Keywords

References

  1. E. Ott, C.Grebogi, and J.A York,'Controlling Chaos', Phys. Rev.Lett., vol. 64, no.1196-1199, 1990 https://doi.org/10.1103/PhysRevLett.64.1196
  2. T. Shinbrot, C.Grebogi, E.Ott, and J.A.Yorke, 'Using small perturbations to control chaos', Nature, vol. 363, pp. 411-417, 1993 https://doi.org/10.1038/363411a0
  3. M. Itoh, H. Murakami and L. O. Chua, 'Communication System Via Chaotic Modulations' IEICE. Trans. Fundmentals. vo1.E77-A, no. , pp.1000-1005, 1994
  4. L. O. Chua, M. Itoh, L. Kocarev, and K. Eckert, 'Chaos Synchronization in Chua's Circuit' J. Circuit. Systems and computers, vol. 3, no. 1, pp. 93-108, 1993 https://doi.org/10.1142/S0218126693000071
  5. M. Itoh, K. Komeyama, A. Ikeda and L. O. Chua, ' Chaos Synchronization in Coupled Chua Circuits', IEICE. NLP. 92-51. pp. 33-40. 1992
  6. K. M. Short, ' Unmasking a modulated chaotic communications scheme', Int. J. Bifurcation and Chaos, vol. 6, no. 2, pp. 367-375, 1996 https://doi.org/10.1142/S0218127496000114
  7. L. Kocarev, ' Chaos-based cryptography: A brief overview,' IEEE, Vol. pp. 7-21. 2001
  8. M. Bertram and A. S. Mikhailov, 'Pattern formation on the edge of chaos: Mathematical modeling of CO oxidation on a Pt(11O) surface under global delayed feedback', Phys. Rev. E 67, pp. 036208, 2003
  9. K. Krantz, f. H. Yousse, R.W , Newcomb, 'Medical usage of an expert system for recognizing chaos', Engineering in Medidne and Biology Society, 1988. Proceedings of the Annual International Conference of the IEEE, 4-7, pp. 1303 -1304,1988
  10. akamura, A., Sekiguchi. 'The chaotic mobile robot' IEEE Transactions on Robotics and Automation , Volume: 17 Issue: 6 , pp. 898 -904, 2001 https://doi.org/10.1109/70.976022
  11. H. Okamoto and H. Fujii, Nonlinear Dynamics, Iwanami Lectures of Applied Mathematics, Iwanami, Tokyo, 1995, vol. 14
  12. Y. Bae, J. Kim, Y.Kim, 'The obstacle collision avoidance methods in the chaotic mobile robot', 2003 ISIS, pp.591-594, 2003
  13. Y. Bae, J. Kim, Y.Kim, ' Chaotic behavior analysis in the mobile robot: the case of Chua's equation', Proceeding of KFIS Fall Conference 2003, vol. 13, no. 2, pp.5-8, 2003
  14. Y. Bae, J. Kim, Y.Kim, 'Chaotic behavior analysis in the mobile robot: the case of Amold equation' , Proceeding of KFIS Fall Conference 2003, vol. 13, no. 2, pp110-113, 2003
  15. Y. C. Bae, J.W. Kim, Y.I, Kim, Chaotic Behaviour Analysis in the Mobileof Embedding some Chaotic Equation with Obstacle', Journal of Fuzzy Logic and Intelligent Systems, vol. 13, no.6, pp.729-736, 2003 https://doi.org/10.5391/JKIIS.2003.13.6.729
  16. Y. C. Bae, J. W. Kim, Y.I, Kim, Obstacle Avoidance Methods in the Chaotic Mobile Robot with Integrated some Chaotic Equation', International Journal of Fuzzy Logic and Intelligent System, vol. 3, no. 2. pp. 206-214, 2003 https://doi.org/10.5391/IJFIS.2003.3.2.206