• 제목/요약/키워드: channel equalizer

Search Result 431, Processing Time 0.028 seconds

A Study on the Design of Cross-Polarization Interference Canceler for Digital Radio Relay System with Co-Channel Dual Polarization (동일 채널 이중편파를 적용하는 디지털 무선 중계장치의 직교편파간섭제거기 설계에 관한 연구)

  • 서경환
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.13 no.3
    • /
    • pp.225-236
    • /
    • 2002
  • In this paper, to counteract a cross-polarization interference caused by co-channel dual polarization technique of digital radio relay system(DRRS), we analyze the theoretical model and digital design of cross-polarization interference canceller(XPIC). In addition a complex adaptive time domain equalizer(ATDE) is designed using a finite impulse response filter, and the structure of XPIC and its control method are also illustrated including ATDE. Our computer simulation shows that about 25 dB signature and more than 23 dB XPIC improvement factor can be obtained with XPIC and ATDE. In order to verify the operation of designed XPIC, we review the simulated results in view of tap number, algorithm convergence, system signature, and XPlC improvement factor in connection with 64-QAM DRRS with co-channel dual polarization.

A Single-User ]deceiver using Pilot-Assisted Channel Equalizer for DS-CDMA Downlink (DS-CDMA 하향링크에서 파일럿지원 채널등화기를 이용한 단일사용자 수신기)

  • 남옥우;김재형;김응배
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.4 no.3
    • /
    • pp.661-669
    • /
    • 2000
  • DS-CDMA downlink distinguishes actual user by orthogonal spreading codes ,but its orthogonality may be lost by the multiple access interference(MAI) caused by the multipath channel. Therefore in this paper, we proposed the single-user receiver, which use linear channel equalizer to eliminate the interference due to multipath channel and to recover orthogonality and then use code-matched filter to detect transmitted data. Unlike existing research, which mainly assumed ideal channel information, we use pilot channel assisted methods that is a kind of transmission of a parallel reference method to estimate the channel coefficients. Especially we use guard symbols which are inserted periodically to estimate channel coefficients exactly without interference from user signal. The results show that we accepted an approximately ideal channel information and achieved excellent performance improvement using proposed receiver compared with the conventional receiver especially user populations are high.

  • PDF

The Performance Improvement Method using Decision Feedback Channel Estimation Scheme in PB/MC-CDMA System (PB/MC-CDMA 시스템에서 결정 귀한 채널 추정 기법을 이용한 성능 향상 방법)

  • Lee, Kyujin;Kim, Guijung
    • Journal of Digital Convergence
    • /
    • v.12 no.12
    • /
    • pp.329-335
    • /
    • 2014
  • In this paper, to improve the performance of PB/MC-CDMA system, we have researched about the decision feedback channel estimation method using the pilot symbol with data symbol. The PB/MC-CDMA system is able to obtain the improved BER by frequency diversity gain and frequency domain equalizer in the frequency selective fading channel. However, when it is not the estimating of channel exactly, it is degrading the performance of BER in the system for occurred the interference among users. To improve the performane system in the multi-user environment the proposed system is using the decision feedback to estimate channel using the channel estimated value of the first stage and second stage. The proposed system is evaluated by computer simulation. The proposed system is not only able to improve the performance of BER by decreasing the interference to each user, but also the proposed system is possible to reduce number of pilot symbol to estimate the channel. Therefore, it confirmed the proposed system improves the performance than the conventional system.

Blind Nonlinear Channel Equalization by Performance Improvement on MFCM (MFCM의 성능개선을 통한 블라인드 비선형 채널 등화)

  • Park, Sung-Dae;Woo, Young-Woon;Han, Soo-Whan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.11
    • /
    • pp.2158-2165
    • /
    • 2007
  • In this paper, a Modified Fuzzy C-Means algorithm with Gaussian Weights(MFCM_GW) is presented for nonlinear blind channel equalization. The proposed algorithm searches the optimal channel output states of a nonlinear channel from the received symbols, based on the Bayesian likelihood fitness function and Gaussian weighted partition matrix instead of a conventional Euclidean distance measure. Next, the desired channel states of a nonlinear channel are constructed with the elements of estimated channel output states, and placed at the center of a Radial Basis Function(RBF) equalizer to reconstruct transmitted symbols. In the simulations, binary signals are generated at random with Gaussian noise. The performance of the proposed method is compared with those of a simplex genetic algorithm(GA), a hybrid genetic algorithm(GA merged with simulated annealing(SA): GASA), and a previously developed version of MFCM. It is shown that a relatively high accuracy and fast search speed has been achieved.

Equalizer Mode Selection Method for Improving Bit Error Performance of Underwater Acoustic Communication Systems (수중음향통신 시스템의 비트 오류 성능 향상을 위한 등화 모드 선택 방법)

  • Kim, Hyeon-Su;Seo, Jong-Pil;Kim, Jae-Young;Kim, Seong-Il;Chung, Jae-Hak
    • The Journal of the Acoustical Society of Korea
    • /
    • v.31 no.1
    • /
    • pp.1-10
    • /
    • 2012
  • The linear and decision-feedback equalization can mitigate time-varying intersymbol interference (ISI) caused by time-varying multipath propagation for underwater acoustic channels. The perfect elimination of interference components, however, is difficult using the linear equalization and the decision feedback equalizer has an error propagation problem. To overcome these shortcomings, this paper proposes an equalizer mode selection method using training sequences. The proposed method selects an equalization mode corresponding to the signal-to-noise ratio (SNR). If the SNR is low, the proposed system operates the linear equalizer for preventing the error propagation and if the SNR is high, the decision feedback equalizer for eliminating the residual ISI. Therefore, the proposed method can improve the error performance compared to the conventional equalizers. The computer simulation shows the proposed method improves the bit error performance using practical underwater channels responses acquired from the sea experiment.

Signal Processing for Perpendicular Recording Systems

  • Lee, Jun;Woo, Choong-Chae
    • Journal of IKEEE
    • /
    • v.15 no.1
    • /
    • pp.70-75
    • /
    • 2011
  • Longitudinal recording has been the cornerstone of all two generations of magnetic recording systems, FDD and HDD. In recent, perpendicular recording has received much attention as promising technology for future high-density recording system Research into signal processing techniques is paramount for the issued storage system and is indispensable like longitudinal recording systems. This paper focuses on the performance evaluation of the various detectors under perpendicular recording system. Parameters for improving the their performance are examined for some detectors. Detectors considered in this work are the partial response maximum likelihood (PRML), noise-predictive maximum likelihood (NPML), fixed delay tree search with decision feedback (FDTS/DF), dual decision feedback equalizer (DDFE) and multilevel decision feedback equalizer (MDFE). Their performances are analyzed in terms of mean squared error (MSE) and noise power spectra, and similarity between recording channel and partial response (PR) channel.

Novel New Approach to Improve Noise Figure Using Combiner for Phase-Matched Receiver Module with Wideband Frequency of 6-18 GHz

  • Jeon, Yuseok;Bang, Sungil
    • Journal of electromagnetic engineering and science
    • /
    • v.16 no.4
    • /
    • pp.241-247
    • /
    • 2016
  • This paper proposes the design and measurement of a 6-18 GHz front-end receiver module that has been combined into a one- channel output from a two-channel input for electronic warfare support measures (ESM) applications. This module includes a limiter, high-pass filter (HPF), power combiner, equalizer and amplifier. This paper focuses on the design aspects of reducing the noise figure (NF) and matching the phase and amplitude. The NF, linear equalizer, power divider, and HPF were considered in the design. A broadband receiver based on a combined configuration used to obtain low NF. We verify that our receiver module improves the noise figure by as much as 0.78 dB over measured data with a maximum of 5.54 dB over a 6-18 GHz bandwidth; the difference value of phase matching is within $7^{\circ}$ between ports.

PRML Detection Method Using PRSNR (부분응답 신호대잡음비를 이용한 PRML 검출 방법)

  • Park Ae-Kyung;Lee Jae-Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.9C
    • /
    • pp.840-845
    • /
    • 2006
  • This paper presents a partial response maximum likelihood (PRML) detection method using partial response signal-to-noise ratio (PRSNR) that evaluates the signal quality of asymmetric optical recording channel. It is confirmed that the equalizer maximizing the PRSNR value can be most properly adapted to the asymmetric optical recording channel. The proposed PRML detection using this result has 1.8dB SNR gain at $8.5{\times}10-5$ bit error rate compared to PRML detection using typical adaptive equalizer.

Neural adaptive equalization of M-ary QAM signals using a new activation function with a multi-saturated output region (새로운 다단계 복소 활성 함수를 이용한 신경회로망에 의한 M-ary QAM 신호의 적응 등화)

  • 유철우;홍대식
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.35C no.1
    • /
    • pp.42-54
    • /
    • 1998
  • For decreasing intersymbol interference (ISI) due to band-limited channels in digitalcommunication, the uses of equalization techniques are necessary. Among the useful adaptive equalization techniques, because of their ease of implementation and nonlinear capabilites, the neural networks have been used as an alternative for effectively dealing with the channel distortion. In this paepr, a complex-valued multilayer percepron is proposed as a nonlinear adaptive equalizer. After the important properties that a suitable complex-valued activation function must possess are discussed, a new complex-valued activation function is developed for the proposed schemes to deal with M-ary QAM signals of any constellation sizes. It has been further proven that by the nonlinear transformation of the proposed function, the correlation coefficient between the real and imaginary parts of input data decreases when they are jointly Gaussian random variables. Lastly, the effectiveness of the proposed scheme is demonstrated by simulations. The proposed scheme provides, compared with the linear equalizer using the least mean squares (LMS) algorith, an interesting improvement concerning Bit Error Rate (BER) when channel distortions are nonlinear.

  • PDF

Multichannel Blind Equalization using Multistep Prediction and Adaptive Implementation

  • Ahn, Kyung-Seung;Hwang, Ho-Sun;Hwang, Tae-Jin;Baik, Heung-Ki
    • Proceedings of the IEEK Conference
    • /
    • 2001.06a
    • /
    • pp.69-72
    • /
    • 2001
  • Blind equalization of transmission channel is important in communication areas and signal processing applications because it does not need training sequence, nor does it require a priori channel information. Recently, Tong et al. proposed solutions for this problem exploit the diversity induced by antenna array or time oversampling, leading to the second order statistics techniques, fur example, subspace method, prediction error method, and so on. The linear prediction error method is perhaps the most attractive in practice due to the insensitive to blind equalizer length mismatch as well as for its simple adaptive filter implementation. Unfortunately, the previous one-step prediction error method is known to be limited in arbitrary delay. In this paper, we induce the optimal delay, and propose the adaptive blind equalizer with multi-step linear prediction using RLS-type algorithm. Simulation results are presented to demonstrate the proposed algorithm and to compare it with existing algorithms.

  • PDF