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Abstract—Blind  equalization of transmission channel is
important in communication areas and signal processing
applications because it does not need training sequence, nor
does it require a priori channel information. Recently, Tong et al.
proposed solutions for this problem exploit the diversity induced
by antenna array or time oversampling, leading to the second
order statistics techniques, for example, subspace method,
prediction error method, and so on. The linear prediction error
method is perhaps the most attractive in practice due to the
insensitive to blind equalizer length mismatch as well as for its
simple adaptive filter implementation. Unfortunately, the
previous one-step prediction error method is known to be
limited in arbitrary delay. In this paper, we induce the optimal
delay, and propose the adaptive blind equalizer with multi-step
linear prediction using RLS-type algorithm. Simulation results
are presented to demonstrate the proposed algorithm and to
compare it with existing algorithms.

I. INTRODUCTION

Muitipath propagation appears to be a typical limitation in
mobile digital communication where it leads to severe
intersymbol interference (ISI). The classical techniques to
overcome this problem use either periodically sent
training sequences or blind techniques exploiting higher
order statistics (HOS). Adaptive equalization using
training sequence wastes the bandwidth efficiency but in
blind equalization, no training is needed and the equalizer
is obtained only with the utilization of the received signal.
Since the seminal work by Tong ef al. the problem of
estimating the channel response of multiple FIR channel
driven by an unknown input symbol has interested many
researchers in the signal processing areas and
communication fields [3].

For the most part, algebraic and second-order statistics
(SOS) techniques have been proposed that exploit the
structural techniques (Hankel, Toeplitz matrix, et al.) of
the single-input multiple-output (SIMO) channel or data
matrices. The information on channel parameters or
transmitted data is typically recovered through subspace
decomposition of the received data matrix (deterministic
method) or that of the received data correlation matrix
(stochastic method). Subspace-based techniques lay in the
fact that they rely on the existence of numerically well-
defined dimensions of the noise-free signal or noise
subspaces. Since these dimensions are obviously closely
related to the channel length, subspace-based techniques
are extremely sensitive to channel order mismatch[6].

The prediction error methods (PEM) offer an
alternative to the class of techniques above. The PEM
offers great practical advantages over most other
proposed techniques. First, channel estimation using the
PEM remains consistent in the presence of the channel
length mismatch. This property guarantees the robustness
of the technique with respect to the difficult channel
length estimation problem. Another significant advantage
of the PEM is that it lends itself easily to a low-cost
adaptive implementation such as adaptive lattice filters.
But the delay cannot be controlled with existing one-step
linear prediction[5][6][8). In this paper, we proposed
novel adaptive blind equalizer algorithms based on
multistep prediction method. Also, we present simulation
results comparing the proposed method and existing
algorithm.

I1. PROBLEM FORMULATION

Let x(f) be the signal at the output of a noisy channel

x(1)= Y s(k)h(t - kT)+w(2) O
k=0
where s(k) denotes the transmitted symbol at time k7, h(¢)
denotes the continuous-time channel impulse response,
and v(f) is additive noise. The fractionally spaced
discrete-time model can be obtained either by time
oversampling or by the sensor array at the receiver[6].
The oversampled single-input single-output (SISO) model
results SIMO model as in Fig. 1. The corresponding
discrete SIMO model is described as follows
L-1

XM=Y s(h(n-k)+v,(n), i=0L-,P~1 2

k=0

Let
x(n) =[x, (n) - x,, (W]
h(n) = [y (n)--- oy (W) ®
v(n) =[v,(n)---v, (M)

We represent x(r) in a vector form as

x(n) = LZ—l:s(k)h(n—k)+ v(n) @

Stacking N received vector samples into an (VPx1)-vector,
we can write a matrix equation as

Xy (n)=Hs(n)+Vy(n) ®)
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Fig. 1. SIMO channel with P subchannels and equalizer.
where H is a NPx(N+L-1) block Toeplitz matrix, s(#) is
(N+L-D)x1, X{n), and Va(n) are NPx1 vectors.

s(my={[s(n)---s(n—L-N+2)]"
X, m=[x"(x" (n-N+D]"

V(M) =[v ()-v" (n=N + DI ©)
h(0) h(L-1) - 0
H=| : - : T :
0 - h) h(L-1)

We assume the following throughout in this paper.

A1) The input sequence s(n) is zero mean and white with
variance O;

A2) The noise is stationary with zero mean and white
with variance &,%.

A3) The sequences s(n) and v(r) are uncorrelated.

A4) The matrix H has full rank, i.e., the subchannels /(r)
have no common zeros to satisfy the Bezout
equation.

A5) The dimensions of H obey NP>L+N.

The ith subchannel h,(n) is equalized by the filter g(n),
as shown in Figure 1. A ZF equalizer whose subchannels
are order L, is described by

Pl Lg-1

Y. 2 h(n~k)g,(k) = 8n~D)

i=0 k=0

Above equation can be written in matrix form as follows

™

@®

where ep. is a (W+L)x1 vector with a 1 as the (D+1)st
element and zeros elsewhere.

A ZF equalizer is proved in [3]-[5] and we consider
noise-free case. The correlation matrix of received signal
of (5) is

T T
g H=ep,

R = E[X, (mX} ()] = c;HH" ®)
From (8), we induce the zero-delay equalizer
gl =c?H(O)R* = c’[h" (0) OJR" 10)

where H(0) is the first column of matrix H and R’
denotes the Moore-Penrose inverse of R.

Considering that an arbitrary-delay blind equalizer, it is
proved in [4] that an equalizer g, with D-delay can be
obtained from g; as

gr =gR,R* (11

where R = E[X y(n- D)X ()]

getsls =28 243 H1 2

III. MULTISTEP PREDICTION AND LS APPROACH
To ADAPTIVE BLIND EQUALIZATION

A. Multistep Prediction Based Blind Equalization

A zero-delay ZF equalizer based on linear prediction is
proposed in [5] and [6]. We know that

gg =h" o, -P,,] (12)

where -Py,; is PxP(N-1) prediction coefficient matrix. It
is obtained by minimizing the prediction error variance in
[6] or using least squares lattice (LSL) algorithm[5]. And
a D-step forward predictor of order N produces an
estimation of the received signal x(1) based on the N
previous signal xp(n-D)[11].

i(n)=ax(n-D)+--+a,x(n-N-D+1)  (13)
The D-step forward prediction error is given by
f,(n) = x(n)—X(n)
= Oppy - A}V]XN+D n (14)
=K Xy.p(n)
Using well-known orthogonality principle between
prediction error and input sequences, it produces
D-1
f,(W=KiXy,,(M =Y h(stn-) (9
=0

The D-delay blind equalization method considered here
is based on the output of D- and (D+1)-step prediction
error filters. A D-delay ZF equalizer can be obtained after
acknowledging from (15)

foam—f,(m)=K,, - KD)H Xy.p(n)

P p-1 (16)
=Y h(j)s(n = j)— > h(j)s(n - j)=h(D)s(n - D)
j=0 j=0

Therefore, the transmitted symbol can then be extracted

as follows

h" (D)
s(n=D) = === (£, (n) - £, ()
Iy = P
The predictor coefficients are selected such that the
mean square value of fp(n), i.e., E[Ifo(m)2], is minimized.
Therefore, for any set of predictor coefficients a,
(1<k<N),

DE[f, (5 ()]
oa

an

=0, for0<k<N

. (18)
=rD+1-D-Yalrtk-=0,/=1-,N

k=1
We can rewrite above equation using matrix form as
follows
r(D)
= : (19)
r(D+N-1)

r(0) r(N -1)] a

£ (N 1) r©o) Jal
=>R/A, =1y

To solve the prediction error filter coefficients matrix in

-70 -



Multichannel Blind Equalization using Multistep Prediction and Adaptive Implementation

D-step predictor, it requires matrix inverse calculation for
Yule-Walker equation.

B. LS Approach to Blind Equalization

The D-delay equalizer g, in (11) can be estimated by
linear prediction. Consider the following LS method

e5(n) = x(n—D)-pyx(n)

epa (M) =x(n-D-)~p,x(n-1) (20)
epya(M=x(n-D-N+D)-pyx(n-N+1)
Equation (20) is rewritten with matrix form as
E(n)=Xy(n-D)-PyXy(n) [73))

where E(n) is an PNx1 prediction error vector and Py is a
PNxPN projection matrix. The optimal Py is obtained by
minimizing as following cost function.
J = t{E[EME" (m]} 22

Letting the derivative of (22) with respect to projection
matrix equal to zero as following

oJ _

oPy

So we get as

E[-X, (n- D)X (1) + P, X, (mX£ (m]=0 (23)

PyR-R;=0
PN =R DR+
Comparing (11) with (24) we get as following equation

@9

gh =glPy (25)

It should be noted that the blind equalizer is designed

for transmitted signal recovery at a given delay D. Thus,

different delay can result in different performance. To get

best delay choice, [8] proposes the minimizing MSE
given by

MSE(D) = 1- H? (D)R*H(D) (26)

where H(D) is the (D+1)th block column of the channel

convolution matrix H. Hence, the optimum delay can be
found by

argmax H” (D)R"H(D) 27

C. Adaptive Implementation

We propose the adaptive algorithm for updating the linear
prediction error filter coefficients. To solve (25), we are
required to compute the first linear prediction in (12) and
to estimate the h(0). To estimate h(0), we use eigen-
tracking method in [7]. A zero-delay blind equalizer is
obtained in (12). The second linear prediction in (21) is
computed and then D-delay blind equalizer can be
computed in (25) with predetermined zero-delay blind
equalizer. Based on well-known RLS algorithm shown in
[1], we have derived an RLS-based adaptive algorithm for
computing the zero-delay blind equalizer. Zero-delay and
D-delay blind equalizer are obtained as described in Table
1 and Table 2.

TABLE 1. RLS algorithm for zero-delay blind equalizer.

Initialize the algorithm at time #=0, set
Q,(0)=57"1 pex-1y » O = small positive constant
Py (0)=0
For n=1,2,..., do the following
(1) First linear prediction computation.
Xy(m)=[Xy, X7.]
A'Q(n =X, (n)
1+A7'X , ,(MQ, (- DX, ,(n)
em) =X, ,(W-P,_ (n-DX,,(n)
Py (m) =Py, (n-D+e(mK;' (n)
Q(m =1"Q,(n-D-1"K,(mXy, (MQ,(n-1)
(2) Estimation of channel coefficient vector h(0) in [7].
(3) Computation goin (12).

K,(n)=

TABLE 2. RLS algorithm for D-delay blind equalizer.

Initialize the algorithm at time »=0, set
Q,(0)=8""1,,, & = small positive constant
P,(0)=0

For n=1,2,..., do following

(1) Projection matrix computation.

A'Q,(n-DX, (1)
1+ 17X, (mQ,(n-DX ()
E(n) =X, (n-d)-Py(n-DX(n)
P,(m) =P, (n-D)+E@K?(n)
Q. (M) =X"Q,(n~1) - A'K, (X7 (mQ,(n-1)
(2) Compute the zero-delay blind equalizer gy
(3) Computation of D-delay blind equalizer in (18).

K,(m)=

IV. SIMULATION RESULTS

In this section, we use computer simulations to examine
the performance of the proposed method described in
previous section. In this simulation, as an approximation
of a three-ray multipath environment, the channel impulse
response is given by

h (1) = c(2,0.45)W (£) + 0.8c(t — 0.25T,0.45) -

W(t—0.25T)—0.4c(t - 2T,0.45)W (¢t - 2T)
where ¢(2,0.45) is raised-cosine filter with roll-off factor
0.45, and W(f) is a rectangular window of duration 6
symbol intervals spanning [-0.857 5.14T]. There are four

sub-channels. The MSE of symbol estimation is defined
as in [3].

28

MSE = E[| §(n - D) - s(n) |*] 29

For the simulations, the SNR is defined to be at the input
to the equalizer in Fig. 1.

_ Ella(m) |’}

E[|v(m)I’]

0]
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For each simulation, we have used an i.i.d. input sequence
drawn from a 16-QAM constellation. The noise is
generated from a white Gaussian distribution at varying
SNR’s. The number of subchannels is four. Let the
equalizer order be L=8. In Fig. 2, we show the MSE of
the output for different delay D and the MSE obtained
from (27) under SNR=20dB and 30dB. Fig. 3 and Fig. 4
show the MSE curves for MSE of the proposed RLS and
existing algorithms under SNR=20dB and 30dB,
respectively. In this simulation, we compare the proposed
algorithm with FS-CMA, RLS algorithm proposed by
Halford et al. (denotes Halford algorithm)[4], and LSL
algorithm with forward prediction error filter (FPEF)
proposed by Taylor et al. (denotes Taylor algorithm)[5]. It
is shown that the proposed algorithm performs better than
the others, whereas the Taylor algorithm has poor
performance because equalizers of arbitrary delay cannot
be controlled.

V. CONCLUSION

This paper presents adaptive blind equalizer based on
multichannel linear prediction with optimum delay. We
have developed RLS-type algorithm for updating
prediction coefficient matrix as a projection matrix. Our
proposed method ensures flexible delay control and
provides flexibility for a practical implementation since
various well-known adaptive algorithms. Furthermore,
our algorithms are robust to channel order over-
determination in nature of linear prediction characteristics,
and do not need channel length estimation. Simulation
results show that out algorithm have good performance in
channel equalization. Compared with HOS-based
algorithm such as CMA, our algorithms are based on
SOS; thus faster convergence can be achieved.
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Fig. 2. MSE curves for different delay.
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Fig. 3. MSE comparison of existing algorithms and the
proposed algorithm, SNR=30dB.
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Fig. 4. MSE comparison of existing algorithms and the
proposed algorithm, SNR=20dB.
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