• Title/Summary/Keyword: channel equalization

Search Result 400, Processing Time 0.026 seconds

Performance Analysis of Cyclostationary Interference Suppression for Multiuser Wired Communication Systems

  • Im, Gi-Hong;Won, Hui-Chul
    • Journal of Communications and Networks
    • /
    • v.6 no.2
    • /
    • pp.93-105
    • /
    • 2004
  • This paper discusses cyclostationary interference suppression for multiuser wired communication systems. Crosstalk interference from digital signals in multipair cables has been shown to be cyclostationary. Many crosstalk equalization or suppression techniques have been proposed which make implicit use of the cyclostationarity of the crosstalk interferer. In this paper, the convergence and steady-state behaviors of a fractionally spaced equalizer (FSE) in the presence of multiple cyclostationary crosstalk interference are thoroughly analyzed by using the equalizer's eigenstructure. The eigenvalues with multiple cyclostationary interference depend upon the folded signal and interferer power spectra, the cross power spectrum between the signal and the interferer, and tile cross power spectrum between the interferers, which results in significantly different initial convergence and steady-state behaviors as compared to the stationary noise case. The performance of the equalizer varies depending on the relative clock phase of the symbol clocks used by the signal and multiple interferers. Measued characteristics as well as analytical model of NEXT/FEXT channel are used to compute the optimum and worst relative clock phases among the signal and multiple interferers.

Euclidean Distance of Biased Error Probability for Communication in Non-Gaussian Noise (비-가우시안 잡음하의 통신을 위한 바이어스된 오차 분포의 유클리드 거리)

  • Kim, Namyong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.3
    • /
    • pp.1416-1421
    • /
    • 2013
  • In this paper, the Euclidean distance between the probability density functions (PDFs) for biased errors and a Dirac-delta function located at zero on the error axis is proposed as a new performance criterion for adaptive systems in non-Gaussian noise environments. Also, based on the proposed performance criterion, a supervised adaptive algorithm is derived and applied to adaptive equalization in the shallow-water communication channel distorted by severe multipath fading, impulsive and DC-bias noise. The simulation results compared with the performance of the existing MEDE algorithm show that the proposed algorithm yields over 5 dB of MSE enhancement and the capability of relocating the mean of the error PDF to zero on the error axis.

Convergence Analysis of Multiple Constrained Subband Affine Projection Algorithm (다중제한조건을 갖는 부밴드 AP 알고리즘의 수렴해석)

  • Kim, Young-Min;Sohn, Sang-Wook;Choi, Hun;Bae, Hyeon-Deok
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.10a
    • /
    • pp.474-476
    • /
    • 2009
  • In the radio communication, such as echo cancellation and channel equalization, adaptive filtering is very practical. Its convergence behavior that is used for updating the weights depends on the correlation of the input signal and length of adaptive filter. Highly correlated input and long length of adaptive filter deteriorate the convergence behavior. To solve this problem, recently, subband affine projection algorithm which pre-whiten the correlation of the input and update the weights in subband structure has been presented. This paper presents convergence analysis method of multiple constrained subband affine projection algorithm.

  • PDF

A Comparison of Symbol Error Performance for SC-FDE and OFDM Transmission Systems in Modeled Underwater Acoustic Communication Channel (모델링된 수중음향 채널환경에서 SC-FDE와 OFDM 전송방식의 심볼오율 비교)

  • Hwang, Ho-Seon;Park, Gyu-Tae;Joo, Jae-Hoon;Shin, Kee-Cheol
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.19 no.3
    • /
    • pp.139-146
    • /
    • 2018
  • Underwater acoustic communication can be applied to various area such as scientific, commercial and military survey using Autonomous Underwater Vehicles and Unmanned Underwater Vehicles. Underwater communication is studying very actively by advanced country like United States. But differ from wireless communication in the air, underwater acoustic communication has some difficult problems, ISI(Inter Symbol Interference) due to multipath and limit of transmission bandwidth due to slow propagation of sound wave. In this paper, SC-FDE and OFDM transmission system for the cancellation of ISI in conjunction with underwater acoustic channel modeling are applied to the underwater simulation of communication. The performance of these methods in the simulation guide to possibility of adopting in underwater acoustic communication algorithm. For this purpose, we compare SER performance of SC-FDE with that of OFDM for modelled underwater channel. Underwater channel is generated by Bellhop model. Simulation results show above 5dB SNR gain at 10-3 SER. And it demonstrate SC-FDE is efficient method for underwater acoustic communication.

Digital Modulation Types Recognition using HOS and WT in Multipath Fading Environments (다중경로 페이딩 환경에서 HOS와 WT을 이용한 디지털 변조형태 인식)

  • Park, Cheol-Sun
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.45 no.5
    • /
    • pp.102-109
    • /
    • 2008
  • In this paper, the robust hybrid modulation type classifier which use both HOS and WT key features and can recognize 10 digitally modulated signals without a priori information in multipath fading channel conditions is proposed. The proposed classifier developed using data taken field measurements in various propagation model (i,e., rural area, small town and urban area) for real world scenarios. The 9 channel data are used for supervised training and the 6 channel data are used for testing among total 15 channel data(i.e., holdout-like method). The Proposed classifier is based on HOS key features because they are relatively robust to signal distortion in AWGN and multipath environments, and combined WT key features for classifying MQAM(M=16, 64, 256) signals which are difficult to classify without equalization scheme such as AMA(Alphabet Matched Algorithm) or MMA(Multi-modulus Algorithm. To investigate the performance of proposed classifier, these selected key features are applied in SVM(Support Vector Machine) which is known to having good capability of classifying because of mapping input space to hyperspace for margin maximization. The Pcc(Probability of correct classification) of the proposed classifier shows higher than those of classifiers using only HOS or WT key features in both training channels and testing channels. Especially, the Pccs of MQAM 3re almost perfect in various SNR levels.

Adaptive Multi-Tap Equalization for Removing ICI Caused by Transmitter Power Transient in LTE Uplink System (LTE 상향 링크 시스템에서 송신기의 전력 과도 현상에 의해 발생하는 ICI를 제거하기 위한 적응적 멀티 탭 등화 기법)

  • Chae, Hyuk-Jin;Cho, Il-Nam;Kim, Dong-Ku
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.8
    • /
    • pp.701-713
    • /
    • 2009
  • This paper studies a method for reducing performance degradation due to losing sub-carrier orthogonality caused by power transient between physical channels in LTE uplink transmission. The pattern of inter-carrier interference(ICI) caused by power transient is different from what has been studied for doppler shift, in that its pattern occurs at front and rear sides of channels in each period of power transient. The reason of ICI's occurrence results from power difference between channels, power transient duration, multi-path channel delay spread, and numbers of sub-carrier. New criterion is proposed to find out number of taps of multi-tap equalizer enough to improve the ICI. The scheme is to determine the number of taps of multi-tap equalizer when a normalized interference or a normalized ICI is greater than a normalized noise. Simulation results show that the number of taps is flexibly adjusted according to SNR(Signal to Noise Ratio) of a received signal to improve Bit Error Rate(BER), while the complexity of the proposed scheme is reduced down to 88 percentage of the classical method.

Performance Improvement of SE-MMA Adaptive Equalization algorithm by Selective Updating (Selective Updating에 의한 SE-MMA 적응 등화 알고리즘의 성능 개선)

  • Lim, Seung-Gag
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.16 no.2
    • /
    • pp.101-106
    • /
    • 2016
  • This paper proposes the SU-SE-MMA algorithm which applying the concept of selective updaing to the SE-MMA that is possible to reduce the intersymbol interference due to distortion occurred at the channel when transmit the nonconstant modulus 16-QAM signal. The SE-MMA emerged for the simplifying the computational operation from the current MMA adaptation algorithm, then it's has the fast convergence speed and has a problem of increase the residual component in the steady state. The SU-SE-MMA performs the selectively tap updating when the distance of equalizer output and specified transmit signal point is greater than the given threshold value and tap updaing does not occurred in the small distance. By this selective updating process, it is possible to more reduction in the computational operation in the propose algorithm. The improved adaptive equalization performance of SU-SE-MMA like as the equalizer output signal constellation, residual isi, MD, SER were confirmed by computer simulation compared to SE-MMA. As a result of simulation, the AV-SE-MMA has better performance in output signal constellation, residual isi and MD compared to the SE-MMA, but it was confirmed that the AV-SE-MMA has similar in the SER performance that means the robustness to the noise.

Trace-Back Viterbi Decoder with Sequential State Transition Control (순서적 역방향 상태천이 제어에 의한 역추적 비터비 디코더)

  • 정차근
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.40 no.11
    • /
    • pp.51-62
    • /
    • 2003
  • This paper presents a novel survivor memeory management and decoding techniques with sequential backward state transition control in the trace back Viterbi decoder. The Viterbi algorithm is an maximum likelihood decoding scheme to estimate the likelihood of encoder state for channel error detection and correction. This scheme is applied to a broad range of digital communication such as intersymbol interference removing and channel equalization. In order to achieve the area-efficiency VLSI chip design with high throughput in the Viterbi decoder in which recursive operation is implied, more research is required to obtain a simple systematic parallel ACS architecture and surviver memory management. As a method of solution to the problem, this paper addresses a progressive decoding algorithm with sequential backward state transition control in the trace back Viterbi decoder. Compared to the conventional trace back decoding techniques, the required total memory can be greatly reduced in the proposed method. Furthermore, the proposed method can be implemented with a simple pipelined structure with systolic array type architecture. The implementation of the peripheral logic circuit for the control of memory access is not required, and memory access bandwidth can be reduced Therefore, the proposed method has characteristics of high area-efficiency and low power consumption with high throughput. Finally, the examples of decoding results for the received data with channel noise and application result are provided to evaluate the efficiency of the proposed method.

On the Performance Analysis of Blind Equalization for Parial Response Channels (부분응답 채널에 대한 블라인드 등화기의 성능분석)

  • Lee, Sang-Kyung;Lee, Jae-Chon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.4C
    • /
    • pp.413-423
    • /
    • 2003
  • The CMA algorithmis most widely investigated blind algorithm and the most widely used one in practice. But, since nonlinear CM cost function have not closed form solution about the optimum weight. There have been difficultiesto analyze the CMA equalizer's theoretical performance. Recently, Zeng presents the notable theoretical resultabout the MSE of CM-minimizing estimators for the FIR linear channel in the presence of AWGN. Through this method, It wouldbe possible to campare the theoretical performance between CMA and Wiener equalizer in terms of MSE. In this paper, based on Zeng's method, we first calculate the theoretical MSE bound of CMA equalizer in partial response channel which is widely used in HDD, digital VCR such as high-density digital recording.playback systems. We confirmedthis result withthe computer simulation. Except this, we also performedthe theoretical and simulation analysis about the modified CMA equalizer, which was proposed to improve the performance of CMA equalizer in partial response channel. Finally, we compare and evaluate the performance analysis results between CMA and Modified CMA equalizer.

Performance Analysis of the Channel Equalizers for Partial Response Channels (부분 응답 채널을 위한 채널 등화기들의 성능 분석에 관한 연구)

  • Lee, Sang-Kyung;Lee, Jae-Chon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.8A
    • /
    • pp.739-752
    • /
    • 2002
  • Recently, to utilize the limited bandwidth effectively, the concept of partial response (PR) signaling has widely been adopted in both the high-speed data transmission and high-density digital recording/playback systems such as digital microwave, digital subscriber loops, hard disk drives, digital VCR's and digital versatile recordable disks and so on. This paper is concerned with adaptive equalization of partial response channels particularly for the magnetic recording channels. Specifically we study how the PR channel equalizers work for different choices of desired or reference signals used for adjusting the equalizer weights. In doing so, we consider three different configurations that are actually implemented in the commercial products mentioned above. First of all, we show how to compute the theoretical values of the optimum Wiener solutions derived by minimizing the mean-squared error (MSE) at the equalizer output. Noting that this equalizer MSE measure cannot be used to fairly compare the three configurations, we propose to use the data MSE that is computer just before the final detector for the underlying PR system. We also express the data MSE in terms of the channel impulse response values, source data power and additive noise power, thereby making it possible to compare the performance of the configurations under study. The results of extensive computer simulation indicate that our theoretical derivation is correct with high precision. Comparing the three configurations, it also turns out that one of the three configurations needs to be further improved in performance although it has an apparent advantage over the others in terms of memory size when implemented using RAM's for the decision feedback part.