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( Digital Modulation Types Recognition using HOS and WT in
Multipath Fading Environments )
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Abstract

In this paper, the robust hybrid modulation type classifier which use both HOS and WT key features and can recognize
10 digitally modulated signals without a priori information in multipath fading channel conditions is proposed. The proposed
classifier developed using data taken field measurements in various propagation model (e, rural area, small town and
urban area) for real world scenarios. The 9 channel data are used for supervised training and the 6 channe] data are used
for testing among total 15 channel data(ie., holdout-like method). The proposed classifier is based on HOS key features
because they are relatively robust to signal distorfion in AWGN and multipath environments, and combined WT key
features for classifying MQAM(M=16, 64, 256) signals which are difficult to classify without equalization scheme such as
AMA{Alphabet Matched Algorithm) or MMA(Multi-modulus Algorithm). To investigate the performance of proposed
classifier, these selected key features are applied in SVM{Support Vector Machine) which is known to having good
capability of classifying because of mapping input space to hyperspace for margin maximization. The Pec(Probability of
correct classification) of the proposed classifier shows higher than those of classifiers using only HOS or WT key features
in both training channels and testing channels. Especially, the Pccs of MQAM are almost perfect in various SNR levels.

Keywords : Modulation Classification(MC), High-Order Statistics(HOS), Wavelet Transformation{WT),
Support Vector Machine(SVM)

1. Introduction

‘59, 2RRYATA An automatic radio signal modulation classifier
{Agency for Defense Development) finds its use military and civiian communication

Hedak: 2008384204, =445 Y: 200839454
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application  including interference  identification,
spectrum monitoring, signal surveillance, electronic
warfare, nuhtary threat analysis, electronic counter
measure, and software/cognitive radio system.

Most modulation classifiers have been proposed for
recognition of signal format in AWGN channels! ¥,
In practical wireless communication, due to the mul-
tipath, the level of the received signal is always
time-varying and not known. So, classifiers devel-
oped in only AWGN channels suffer from severe
performance degrade of modulation classification(MC)
when they operate in multipath fading environments.

In this paper, data taken real world measurements
were used to simulate situations as close to reality as
it considers multipath propagation
[4].

represent various wireless propagation channels, from

possible, as

environments in These impulse responses
mild fading to severe multipath fading situations.

Since it is known that HOS key features such as
moments and cumulants are relatively robust to
signal distortion, we mainly used HOS key features
for MC. But it is known that HOS key features are
difficult to discriminate among MQ 4

The wavelet transform (WT) is a powerful tool for
analyzing non-stationary signals, which include
digital communication signals, and the WT magnitude
of communication signals vary with modulation
typesm. The WT coefficients have the property of
insensitive to the changing of noise. So we tried to
discriminate among MQAM using WT key features
having the property of insensitive of noise and the
capability for analyzing non-stationary signals.

In this paper, we investigate the performance of
the hybrid classifier with HOS and WT key features
for 10 types of digital modulated signals using data
taken real world measurements.

The paper is organized as follows. In Section I,
the HOS key features for classification are presented.
In Section I, the wavelet key features

classification are presented. In Section IV, the

for

modulation classification using SVM is presented. In
Section V, we investigated the performance of the
proposed hybrid classifier with HOS and WT key

(498)

103

features using numerical simulations in Iriultipath
fading environment, and in Section VI, the paper is
concluded.

II. HOS Key features for MC

In many paper, the higher-order moments and
higher—order cumulants were used for identification of
digital signals. These features can provide a fine way
to describe the shape of the probability density
function.

1. Moments

Probability  distribution
generalization of the concept of the expected value,
and can be used to define the characteristics of a
probability density function. Recall that the general

expression for the ith moment of a random variable
[4~5]

moments are a

is given by

u,:—fw (s —u)f(s)ds 1)

where is g the mean of the random variable. The
definition for the ith moment for a finite length
discrete signal is given by

=Y (5= f(sy) @)

where NV is the data length.
In this paper, signals are assumed to be zero mean.
Thus Eq. (2) becomes

H= z:;ls,';f(sk) 3

Next, the auto-moment of the random variable
may be defined as

Epyop = E[sp(s*)q] (4)

where p and ¢ represent the number of the non
conjugated terms and number of the conjugated
terms, respectively, and p+q is called the moment
order.

For example, for p = 2 and ¢ = 0, Eq. (4) becomes
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which is the second moment or the variance of the
random variable.

In a similar way, expression for E, ;, E, 4, Ejs,
etc. may be easily derived. Note that the normalized
moments F,,; and E,, are called skewness and

kurtosis, respectively.

2. Cumulants
Consider a scalar zero mean random variable s
with characteristic function™®™®

f(0)=E{"}, 6)

Expanding the logarithm of the characteristic
function as a Taylor series, one obtains

log () =k (if) + kz(zi’)z LAG

r!

)

+...

where the constant k, are called the cumulants (of
the distribution) of s. Note that the first three

cumulants (for zero—mean variables) are identical to

the first three moments
k = E{s}
k,= E{SZ} = Ez,z
ky=E{s’}=E,.

8)

The symbolism for the nth order cumulant is
similar to that of the nth order moment. More
specifically

* *
Cp,rq,p =Cum| $8,...,8,8 ,...,8 9)
pterms q terms
For example:
* * ok *
Cyq= Cumls,s,s,8,8 8,8, s ) (10)

We have computed all moments and cumulants up
to the 8th order for 10 modulated
Robustness the candidated features
investigated next by studying their behavior when

signals.

of was
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the modulation signal is passed through the various
fading and multipath propagation model [#1-#9, 6].
These channels cover a variety of different
environments, from rural environment model 1 or 2
paths to urban models with more than 3 different
propagation paths. Some moments and cumulants
can be used to separate different modulation
schemes while others have little or no use. Figure 1

and 2 show a closer look of E,, and Ggu
characteristics for a number of the considered digital
signal types, respectively. Especially, HOS key
feature such as (g, is difficult to discriminate
MQAM signals as shown in Figure 2. The values in
these Figures are computed from 9 training channels
of real-world measurements [Channels #1-#9, 6], as
it considers in [4].
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Based on the procedure above, the selected HOS
key features are 5 (ie, By, K3, Ey, Fsy Csy)
for classify of non-MQAM in the proposed classifier.

OI. WT Key Features for MC

The key features for modulation classification in
pattern recognition approach must be selected.

Wavelet key feature extraction is proposed here.
The main characteristic of wavelet is that it can
provide localized frequency information of a signal,
which is very useful for classification. Due to some
desirable properties, the wavelet basis constructed by
Daubechies became the foundation for the most
popular  technigues
representation in a wide range of applications. Digital

for signal analysis and
modulated waveform is a cyclo-stationary signal that
contains transients in amplitude, frequency or phase
and the WT is quite suitable at extracting transient
information. Another attractive feature of WT is that
it can be computed using fast algorithm (eg., Fast
WT) and hence allowing identification of modulation
types in real time™.

The continuous wavelet transform (CWT) of a
signal z(¢) is defined as

CWT(7,5)= [x(W;

= _l._ jx(t)y/' (ﬂ) dt

sl s
where the function ¥ (t) is called mother wavelet,
¢*
constant.

(11

is its complex conjugate, and s is the scaling

L4

’CDB,

a8 3. dolus 3 =g
Fig. 3. Wavelet Decomnposition Trese.
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Fig. 4.

The baby wavelet %, (t) comes from time-scaling
and translation of the mother wavelet.

The WT decomposition process can be iterated
with successive approximations being decomposed in
turn, so that one signal is broken down into many
lower-resolution components as shown in Figure 3.

This is called the WDT (wavelet decomposition
tree). In this paper, WDT with scale factor 4 (e
standard deviation of approximation and detail
coefficients at each level) is used for modulation
classification.

We selected 5 key features (ie, cAl, cA2, cA3,
cA4, and cD4) for MC using Haar WT because
these key features have robust properties of sensitive
with modulation types and insensitive with SNR
variations, Figure 4 shows the characteristics of
sd_cD4 (ie, o,.p,) among these selected key features.
Note that MQAM signals can almost perfectly
classified using sd_cD4 as shown in Figure 4.

V. Classification using SVM

Support Vector Machine (SVM) is an empirical
modeling algorithm and is the state-of-the-art for
the existing classification methods. The SVM is
basically a two—class classifier based on the ideas of
“large margin” and “mapping data into a higher
dimensional space,” and the kemel functions in the
SVM.
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The first objective of the SVM classification is the
maximization of the margin between the two nearest
data points belonging to two separate classes. The
second objective is to constraint that all data points
belong to the right class. It is a two-class solution
which can use multi-dimensions features. SVMC
(SVM Classifier) classifies the points from two
linearly separable sets in two classes by solving a
quadratic optimization problem in order to find the
optimal separating hyperplane between these two
classes. This hyperplane maximizes the distance from
the convex hulls of each class. These techniques can
be extended to the nonlinear cases by embedding the
data in a nonlinear space using kernel functions. The
robustness of SVMC originates from the strong
fundamentals of statistical learning theory.

Another degree of freedom in the SVMC is the
kernel function used. Since similarities need not
follow properties of Euclidean space, SVM must
firstly transform the similarity space to a manageable
space. This is done by defining a “kemnel” which is
an inner product to convert points in the input space
to points in the feature space.

In modulation classification using SVM, we used
only exponential radial basis function (RBF) kemels.
One of examples using exponential RBF kernel in
SVMC shows as shown in Figure 5.

Since SVM is basically a binary classifier, it is not
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straight forward to apply it to nudti-class
classification problems. The SVM-DDAG (Decision
Directed Acyclic Graph) method yields comparable
accuracy and memory usage to the other two
standard methods (e, 1-v-1 and 1-v-1), but yields
substantial improvement in both training and
evaluation time'”. We applied SVM-DDAG method
using HOS (refer C2) and WT (refer Cl) for our 10
multi-class modulation classification problem (See
Figure 6).

We developed hybrid SVM-DDAG classifier (refer
C3) using both HOS and WT features for our 10
multi-class MC problem as depicted in Figure 7.

V. Numerical Simulation

In this Section, the performance of the proposed
classifiers is investigated in the MATLAB
environment. The 10 digital modulation types (e.
8ASK, 2/4/8FSK, 2/4/8PSK, and 16/64/256QAM) are
classified. We assumed that carrier f_reduencies were

estimated correctly and signals were complex
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baseband.

In numerical simulation, the sampling frequency
was chosen in such a way that all schemes are
sampled with 4 samples/symbol. To distinguish 10
digital modulation types, simulation runs were carried
out with 4,09 samples at SNR range from 0 dB to
30 dB. The probabilities of correct classification (Pcc)
of 50 independent ensembles at each SNR and each
channel in 3 classifiers are plotted for each
modulation types as shown in Figure 8 - 13.

Results indicated an overall success rate of over
95% the SNR of 15dB in 2 classification schemes (i.c.
C2 and C3) as shown in Figure 8. Especially, it was
shown that the proposed classifier(C3) can achieve
the good results with high Pce (e, Pcc >= 90%
over region of 10dB SNR in training channels [#1-#9,

(502)
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in the proposed classifier.

6] (See Fig. 8 and Fig. 10).
Figure 9 shows the Pccs of classifiers i testing
channels[#10-#15, 6. The

classifier in testing channels is about 10% lower than

Pcc of the proposed

that of training channels because the Pcc is heavily
degraded in channel #14 (See Fig. 9 and Fig. 11).
Figure 10 shows the Pccs of C3 in training
channels are good and uniform.
Figure 11 that
performances are affected by the amount of multipath

shows overall classification
distortion and noise in channels. The 6 propagation
channels that are chosen for festing are channels
#10-#11, #12-#13, and #14-#15 and represent a rural, a
small town and wban propagation environments,
These

spectrum of possible noise and multipath propagation

respectively. simulations cover a wide
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Fig. 12. Pccs of digital modulation types at SNR from
0dB-30dB in the proposed classifier (training
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Fig. 13. Pccs of digital modulation types at SNR from

0dB-30dB in the proposed classifier (testing
channels condition).

environment combinations. Especially, it seems that
the distortion condition of Channel #14 is worst.

Figure 12 and 13 show the Pccs of 10 modulated
signals in training and testing channels, respectively.
Some modulation types (ie, 2/4FSK, 2PSK) are
affected heavily in multipath channel conditions as
shown in these figures. It is known that the
classification of MQAM type is a problem since no
suitable HOS can be found to serve as classification
key feature, for the varying environments considered
) But, MQAM signals are almost perfectly classified
using WT key features in proposed classifier as
shown in Figure 12 and 13.

The detailed results of the proposed classifier at

CHEHE HolY &AM HOSY WTE 0|88 cixigl HEHE o4y
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Table 1. Confusion Matrix (Pcc=90,0% in Channel #11),
Estimated Modulation Type @ SNR 10dB
Il | |Ts|[15 1617|718 19 [TH0

Tt 100

T2 100

T3 100

T4 00| 0

T5 100

T6 100

T 100

T8 100

T9 100

T10 100
2 2 Y 130fAMel ME 2AE (Pco=85.8%)

Table 2. Confusion Matrix (Pcc=85.8% in Channel #13).

Estimated Modulation Type @ SNR 104B
TIL I T2 | T3 [ T4 | T5 | T6 | T7 T8 |T9 |TIO
T1 | 100
12 100
T3 100
T4 W0y o
T5 100
T6 58.0 1420
T7 100
T8 100
T9 100
T10 100
B3 g 150 MF 2AlE (Pec=80.0%)

Table 8. Confusion Matrix (Pcc=80.0% in Channel #15).

Estimated Modulation Type @ SNR 10dB
T3 | T4 | T5 | T6 | T7T | T8

Tl 9 | T10

100

T2

Tl
T2
T3
T4
T5
T6
T7
T8
T9
T10

100
98.0

20
100 0
20

98.0

100

100

100

100

100

the SNR of 10dB are provided in the confusion
matrix shown in Table 1-3. Channel 11, 13, 15 are
test channel data and are measured in rural area,
small town and urban area, respectively. These
Tables showed that the Pcc of the proposed classifier
smoothly degrade according to environmental
conditions. Note that the classification of MQAM
type is perfectly classified in these 5 testing channels
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except for channel 14. Because of simplifying the
indication, the digital signal types of &ASK,
2/4/8FSK, 2/4/8PSK, and 16/64/256QAM  are
substituted with T1, T2, T3, T4, T5, T6, T7, T8, T9,
and T10, respectively.

VI. Conclusion

In this paper, the robust hybrid classifier which
use both HOS and WT key features and can
recognize 10 digitally modulated signals without a
priori information in multipath fading
conditions is proposed.

channel

The proposed classifier is developed using data
taken field measurements in various propagation
model (ie., rural area, small town and urban area) for
real world scenarios. The 9 channel data are used for
supervised training and the 6 channel data are used
for testing among total 15 channel data like
holdout-like method. The proposed classifier is based
on HOS key features because they are relatively
robust to signal distortion in AWGN and multipath
environments, and combined WT key features for
classifying MQAM(M=16, 64, 256) signals which are
difficult to classify without equalization scheme such
as AMA or MMA.

To investigate the
classifier, these selected key features are applied in
SVM which is known to having good capability of
classifying because of mapping

performance of proposed

input space to
hyperspace for margin maximization. The Pcc of the
proposed classifier shows higher than those of
classifiers using only HOS or WT key features in
both training channels and testing channels.
Especially, thesPccs of MQAM are almost perfect in
various SNR levels.
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