• Title/Summary/Keyword: cement matrix

Search Result 317, Processing Time 0.024 seconds

Strength properties according to mixing type and ratio Alkali activator of Non-cement matrix using Paper Ash and Polysilicon sludge (폴리실리콘 슬러지와 제지애시를 활용한 무시멘트 경화체의 알칼리자극제 종류 및 혼입율에 따른 강도특성)

  • Sin, Jin-Hyun;Kim, Tae-Hyun;Kim, Heon-Tae;Lee, Dong-Hoon;Lee, Sang-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.05a
    • /
    • pp.173-174
    • /
    • 2017
  • Recently, many experiments using industrial by-products have been going on in Korea and abroad. Most of the studies on blast furnace slag and fly ash have been conducted, and the blast furnace slag based two and three component experiments have been conducted in many places. Therefore, this study is an additional study of research using polysilicon sludge and paper ash, which is a study using existing industrial by-products based on blast furnace slag, as strength properties of alkali activator according to kind and mixing ratio and to obtain basic data do.

  • PDF

Thermal conductivity properties of cement matrix utilizing diatomite and silica gel (규조토 및 실리카겔을 혼입한 시멘트 경화체의 열전도율 특성)

  • Kim, Ki-Hoon;Pyeon, Su-Jeong;Lee, Sang-Soo;Song, Ha-Young
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.05a
    • /
    • pp.230-231
    • /
    • 2018
  • Recently, the danger for radioactive materials has become a hot topic. Beginning with the Chernobyl nuclear accident in 1996, in 2011, the Fukushima nuclear power plant in Japan suffered major damage such as large-scale casualties and radioactive dangerous area selection. Concerns about leakage of radioactive materials due to recent earthquakes have been deepening in Korea, such as Wolsong Nuclear Power Plant in Gyeongju, and there is a growing interest in the safety of radioactive materials through the media and the media. However, the route to exposure to radioactive materials is not limited to these large-scale nuclear accidents. Typical examples of this are radioactive substances exposed in daily life. In the case of radon gas, the danger is being revealed through current events programs and news, and natural radiation exposure is attracting attention.

  • PDF

Hydration Properties of Cement Matrix using Surface Treatment Blast Furnace Slag by Arc Discharge (아크방전에 의해 표면개질 된 고로슬래그를 사용한 시멘트 경화체의 수화 특성)

  • Kim, Sun-A;Kim, Hyeon-Sung;Park, Sun-Gyu
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.05a
    • /
    • pp.91-92
    • /
    • 2018
  • A glassy thin film was formed on the surface of the blast furnace slag. When blast furnace slag is used as an admixture of concrete, addition of alkali activators were required. However, alkali activators are not only dangerous as chemical products, but they are also difficult to use as expensive materials. Therefore, it is necessary to study the way of removal of the glassy thin film of blast furnace slag without the risk and cost increase. In this study, to solve this problem, experiment was carried out to improve the hydration reactivity by treatment the surface of blast furnace slag using arc discharge. Experimental results show that when the surface of the blast furnace slag was tratmented by arc discharge, the glassy thin film was destroyed. And the hydration reactivity was improved, the compressive strength was increased.

  • PDF

Damage Detection in Fiber Reinforced Composites Containing Electrically Conductive Phases

  • Shin, Soon-Gi;Hideaki Matsubara
    • The Korean Journal of Ceramics
    • /
    • v.6 no.3
    • /
    • pp.201-205
    • /
    • 2000
  • Fiber reinforced plastic (FRP) composites and ceramic matrix composites (CMC) which contain electrically conductive phases have been designed and fabricated to introduce the detection capability of damage/fracture detection into these materials. The composites were made electrically conductive by adding carbon and TiN particles into FRP and CMC, respectively. The resistance of the conductive FRP containing carbon particles showed almost linear response to strain and high sensitivity over a wide range of strains. After each load-unload cycle the FRP retained a residual resistance, which increased with applied maximum stress or strain. The FRP with carbon particles embedded in cement (mortar) specimens enabled micro-crack formation and propagation in the mortar to be detected in situ. The CMC materials exhibited not only sensitive response to the applied strain but also an increase in resistance with increasing number of load-unload cycles during cyclic load testing. These results show that it is possible to use these composites to detect and/or fracture in structural materials, which are required to monitor the healthiness or safety in industrial applications and public constructions.

  • PDF

Physical Properties of Matrix with Replacement Ratio of Biomass Fly Ash Based on Cement (시멘트 기반 바이오매스 플라이애시 치환율에 따른 경화체의 물리적 특성)

  • Kim, Dae-Yeon;Cho, Eun-Seok;Lee, Sang-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.05a
    • /
    • pp.209-210
    • /
    • 2019
  • Current international concerns are the energy crisis due to climate change and depletion of fossil fuels due to global warming. Korea has a very high dependency on energy imports 93%. In Korea, 63% of the country is forested, and a power plant using wood biomass is being built in Korea. Biomass fly ash, a by-product of biomass energy generation, is now being discarded. There is little research to utilize discarded biomass fly ash. Therefore, this study aims to solve the environmental problems, develop new mixed materials, improve the quality and utilize the biomass fly ash, which is a by-product of the industrial waste. As a result of the experiment, the flowability decreased as the replacement ratio of biomass fly ash increased. As the replacement ratio of biomass fly ash decreased, the amount of air content.

  • PDF

Evidence of TSA in Cement Matrix (시멘트 경화체중 TSA 현상에 대한 연구)

  • Lee, S.T.;Kim, S.S.;Kim, J.P.;Jung, H.S.;Ryu, J.S.;Moon, H.Y.
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.569-572
    • /
    • 2006
  • TSA(thaumasite sulfate attack) is one of the important and prevailing phenomena to damage concrete structures by sulfate attack. In the present study, the thaumasite ($CaSiO_3{\cdot}CaSO_3{\cdot}CaSO_4{\cdot}15H_2O$) has been observed by the authors and other researchers in concrete samples in laboratory or field. Microstructural and mechanical observations clearly confirm that the thaumasite formation is greatly associated with sulfate attack indicating mass loss, expansion and spalling in the sample. This study summarizes the results of observation carried out by the authors and researchers on TSA which thaumasite formation has been identified.

  • PDF

Air Content and Fluidity Properties of Cement Matrix according to Anthracite Particle-size (안트라사이트 입도에 따른 시멘트 경화체의 공기량 및 유동성 특성)

  • Kyoung, In-Soo;Pyeon, Su-Jeong;Lee, Sang-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.11a
    • /
    • pp.92-93
    • /
    • 2017
  • Recently, there has been an increasing interest in natural radioactive gas radon(Rn-222), the problem of indoor air quality pollution to worldwide. It has been scientifically proven to be hazardous to various diseases such as lung cancer and skin cancer if the human body is exposed to long-term accumulation of atomic nuclei due to the destruction of radon and alpha lines. Based on the indoor air quality control policy, this study is a basic experiment in the manufacture of a selective elimination function to containing radon adsorption and reduction of radon concentration, which is used to absorb radioactive isotopes such as phosphorus and radon in indoor environment.

  • PDF

Thermal Conductivity Properties of Adsorption Matrix According to Silica Gel (실리카겔을 활용한 흡착 경화체의 열전도율 특성)

  • Gwon, Oh-Han;Lim, Hyun-Ung;Lee, Dong-Hoon;Lee, Sang-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.11a
    • /
    • pp.109-110
    • /
    • 2017
  • In recent years, it has been urgently required to develop and study a product that adsorbs and reduces lardon gas due to the risk of lardon gas in Korea. Therefore, this study develops a board for adsorbing lardon gas into the inside and outside of the room. The thermal conductivity was measured in order to carry out an adiabatic test for satisfying the following conditions. Experimental level and factors were substituted with silica gel. In addition, silica gel was used by dry mixing and prewetting, and 10, 20, and 30% of cement was substituted for each. As a result of the test, the thermal conductivity decreased to 0.45 W/mK with increasing the amount of replacement, and reached a similar level when compared with diatomite.

  • PDF

Evaluation of Crack Control Performance of the Concrete with Fiber Combination (섬유혼입 조건에 따른 콘크리트의 균열제어 성능 평가)

  • Park, Jae-Yong;Lee, Myoung-Ho;Kang, Byung-Hoi;Kim, Kyoung-Hoon;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.11a
    • /
    • pp.21-22
    • /
    • 2013
  • Nowadays, the fiber which mixed with concrete matrix always has low adhesion with cement paste. It's difficult to use fiber to reinforce the structure. For more adding fiber in concrete would cause some problems as the low flowability and surface polishing. Further study is needed in fiber using. In this research, further study in fiber reinforced concrete has been invested. Various fibers with different properties have been used to prevent cracking. Fiber reinforced concrete's fundamental properties as slump, air content, compressive strength and tensile strength have been tested. Optimum type of the fiber and optimum addition ratio of fiber has been invested to increase the utility of the fiber which used in concrete.

  • PDF

The Effects of Insoluble Polymers on Water Stability of Carbon Fiber Reinforced Polymer-MDF Cementitious Composites (불용성 폴리머가 탄소섬유 보강 Polymer-MDF 시멘트 복합재료의 기계적 특성에 미치는 영향)

  • 김태진;박춘근
    • Composites Research
    • /
    • v.12 no.3
    • /
    • pp.84-90
    • /
    • 1999
  • High alumina cement(HAC) and polyvinyl alcohol(PVA) based macro-defect-free(MDF) cement composites were reinforced using short carbon fibers, 3mm in length, 1-4% in weight fraction and insoluble polymers such as polyurethane, epoxy, phenol resin, in order to increase mechanical properties and water stability. The specimens were manufactured by the low heat-press(warmpress) method. In addition, the interface and the cross-linking reaction of cement and polymers was also studied by the SEM and TEM. Flexural strength of HAC/PVA based MDF cementitious composites was proportionally decreased with increasing fiber contents due to the undensified structure around fibers. The flexural strength of insoluble polymer added specimen was decreased with increasing fiber contents, while water stability was dramatically improved. Epoxy resin added specimen showed the highest strength with increasing fiber contents, compared with other specimens. The water stability of fiber content 4% added specimen immersed in water presented about 95%, 87% at 3 and 7 days immersed in water, respectively. The interfacial adhesive strength of fiber-matrix was very much improved due to cross linking reaction of polymer and metal ions of cement. Tensile strength of insoluble polymers added composites as linearly increased with increasing the fiber contents. The epoxy resin added specimen also showed highest tensile strength. The 4% fiber added specimen presented 30~80% higher strength than controlled specimen.

  • PDF