• Title/Summary/Keyword: cellular signaling

Search Result 1,120, Processing Time 0.029 seconds

Function and regulation of nitric oxide signaling in Drosophila

  • Sangyun Jeong
    • Molecules and Cells
    • /
    • v.47 no.1
    • /
    • pp.100006.1-100006.10
    • /
    • 2024
  • Nitric oxide (NO) serves as an evolutionarily conserved signaling molecule that plays an important role in a wide variety of cellular processes. Extensive studies in Drosophila melanogaster have revealed that NO signaling is required for development, physiology, and stress responses in many different types of cells. In neuronal cells, multiple NO signaling pathways appear to operate in different combinations to regulate learning and memory formation, synaptic transmission, selective synaptic connections, axon degeneration, and axon regrowth. During organ development, elevated NO signaling suppresses cell cycle progression, whereas downregulated NO leads to an increase in larval body size via modulation of hormone signaling. The most striking feature of the Drosophila NO synthase is that various stressors, such as neuropeptides, aberrant proteins, hypoxia, bacterial infection, and mechanical injury, can activate Drosophila NO synthase, initially regulating cellular physiology to enable cells to survive. However, under severe stress or pathophysiological conditions, high levels of NO promote regulated cell death and the development of neurodegenerative diseases. In this review, I highlight and discuss the current understanding of molecular mechanisms by which NO signaling regulates distinct cellular functions and behaviors.

Effect of the Hesperetin and Naringenin on $pp60^{v-src}$-induced $NF-{\kappa}B$ Activation ($pp60^{v-src}$에 의한 $NF-{\kappa}B$ 활성화에 대한 헤스페레틴과 나린제닌의 저해 효과)

  • Kwon, O-Song;Kim, Bo-Yeon;Kim, Kyoung-A;Kim, Min-Soo;Oh, Hyun-Cheol;Kim, Beom-Seok;Kim, Young-Ho;Ahn, Jong-Seog
    • Korean Journal of Pharmacognosy
    • /
    • v.35 no.3 s.138
    • /
    • pp.244-249
    • /
    • 2004
  • The effects of hesperetin and naringenin on $NF-{\kappa}B$ activation were investigated in normal rat kidney cells transformed by temperature sensitive Rous Sarcoma Virus (tsNRK). The flavonoids, naringenin and hesperetin, significantly reduced v-Src-induced $NF-{\kappa}B$ activation as well as phosphorylation of Akt and GSK-3 in tsNRK cells, whereas these compounds did not effect on platelet-derived growth factor (PDGF)-induced $NF-{\kappa}B$ activation in $NIH3T3{\gamma}l$ cells. In addition, the DNA binding activity of SP-I was also reduced but that of AP-1 was not affected by the compounds. Our study suggests that Src-induced $NF-{\kappa}B$ activation could occur via Akt-GSK-3 pathway without $IkB{\alpha}$ degradation and that naringenin and hesperetin could be used in the treatment of cancer through the inhibition of $NF-{\kappa}B$ activation.

Signal Transduction Network Leading to COX-2 Induction: A Road Map in Search of Cancer Chemopreventives

  • Surh Young-Joon;Kundu Joydeb Kumar
    • Archives of Pharmacal Research
    • /
    • v.28 no.1
    • /
    • pp.1-15
    • /
    • 2005
  • Cancer is still a major global health concern even after an everlasting strive in conquering this dread disease. Emphasis is now given to chemoprevention to reduce the risk of cancer and also to improve the quality of life among cancer afflicted individuals. Recent progress in molecular biology of cancer has identified key components of the cellular signaling network, whose functional abnormality results in undesired alterations in cellular homeostasis, creating a cellular microenvironment that favors premalignant and malignant transformation. Multiple lines of evidence suggest an elevated expression of cyclooxygenase-2 (COX-2) is causally linked to cancer. In response to oxidative/pro-inflammatory stimuli, turning on unusual signaling arrays mediated through diverse classes of kinases and transcription factors results in aberrant expression of COX-2. Population-based as well as laboratory studies have explored a broad spectrum of chemopreventive agents including selective COX-2 inhibitors and a wide variety of anti-inflammatory phytochemicals, which have been shown to target cellular signaling molecules as underlying mechanisms of chemoprevention. Thus, unraveling signaling pathways regulating aberrant COX-2 expression and targeted blocking of one or more components of those signal cascades may be exploited in searching chemopreventive agents in the future.

RNA-Seq Analysis of the Arabidopsis Transcriptome in Pluripotent Calli

  • Lee, Kyounghee;Park, Ok-Sun;Seo, Pil Joon
    • Molecules and Cells
    • /
    • v.39 no.6
    • /
    • pp.484-494
    • /
    • 2016
  • Plant cells have a remarkable ability to induce pluripotent cell masses and regenerate whole plant organs under the appropriate culture conditions. Although the in vitro regeneration system is widely applied to manipulate agronomic traits, an understanding of the molecular mechanisms underlying callus formation is starting to emerge. Here, we performed genome-wide transcriptome profiling of wild-type leaves and leaf explant-derived calli for comparison and identified 10,405 differentially expressed genes (> two-fold change). In addition to the well-defined signaling pathways involved in callus formation, we uncovered additional biological processes that may contribute to robust cellular dedifferentiation. Particular emphasis is placed on molecular components involved in leaf development, circadian clock, stress and hormone signaling, carbohydrate metabolism, and chromatin organization. Genetic and pharmacological analyses further supported that homeostasis of clock activity and stress signaling is crucial for proper callus induction. In addition, gibberellic acid (GA) and brassinosteroid (BR) signaling also participates in intricate cellular reprogramming. Collectively, our findings indicate that multiple signaling pathways are intertwined to allow reversible transition of cellular differentiation and dedifferentiation.

Multiplexing scheme for forward signaling channels in wireless cellular networks (이동통신망의 전향 신호 채널을 위한 다중화 방식)

  • 최천원
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.3
    • /
    • pp.65-75
    • /
    • 1998
  • We consider connection-oriented wireless cellular networks such as the second generation wireless cellular networks and wirelss ATM networks. In these networks, a separate forward signaling channel is provided for the transmission of paging and channel allocation packets. When a call destined to a user is requested, all the base stations in the user's current location area broadcast the corresponding paging packet across forward signaling channels. By slot mode operation and paging group allocation for fusers in a location area, we can reduce relative power consumption level at battery-operated terminals. However, a sthe number of paging groups is increased for lowering relative power consumption level, a paging packet experiences higher delay to access the forward signaling channel. For the pre-negotiated quality-of-service level, paging packet delay level must be limited. In this paper, we consider static and dynamic multiplexing schemes for paging packets, and develop an analytical method for calculating paging packet delay and relative power consumption levels. Using this analytial method, we investigate the effect of network parameters on the paging packet delay and relative power consumption levels.

  • PDF

Cell Death and Stress Signaling in Glycogen Storage Disease Type I

  • Kim, So Youn;Bae, Yun Soo
    • Molecules and Cells
    • /
    • v.28 no.3
    • /
    • pp.139-148
    • /
    • 2009
  • Cell death has been traditionally classified in apoptosis and necrosis. Apoptosis, known as programmed cell death, is an active form of cell death mechanism that is tightly regulated by multiple cellular signaling pathways and requires ATP for its appropriate process. Apoptotic death plays essential roles for successful development and maintenance of normal cellular homeostasis in mammalian. In contrast to apoptosis, necrosis is classically considered as a passive cell death process that occurs rather by accident in disastrous conditions, is not required for energy and eventually induces inflammation. Regardless of different characteristics between apoptosis and necrosis, it has been well defined that both are responsible for a wide range of human diseases. Glycogen storage disease type I (GSD-I) is a kind of human genetic disorders and is caused by the deficiency of a microsomal protein, glucose-6-phosphatase-${\alpha}$ ($G6Pase-{\alpha}$) or glucose-6-phosphate transporter (G6PT) responsible for glucose homeostasis, leading to GSD-Ia or GSD-Ib, respectively. This review summarizes cell deaths in GSD-I and mostly focuses on current knowledge of the neutrophil apoptosis in GSD-Ib based upon ER stress and redox signaling.

Effect of the hedgehog signaling pathway on hair formation-related cells

  • Park, Jaehyun;Park, Sangkyu;Seo, Jeongmin;Roh, Sangho
    • International Journal of Oral Biology
    • /
    • v.44 no.4
    • /
    • pp.144-151
    • /
    • 2019
  • Alopecia has emerged as one of the biggest interests in modern society. Many studies have focused on the treatment of alopecia, such as transplantation of hair follicles or inhibition of the androgen pathway. Hair growth is achieved through proper proliferation of the components such as keratinocytes and dermal papilla cells (DPCs), movement, and interaction between the two cells. The present study examined the effect of the hedgehog (Hh) signaling pathway, which is an important and fundamental signal in the cell, on the morphology and the viability of human keratinocytes and DPCs. Upregulation of Hh signaling caused a morphological change and an increase in epithelium-mesenchymal transition-related gene expression but reduced the viability of keratinocytes, while the alteration of Hh signaling did not cause any change in DPCs. The results show the possibility that the regulation of Hh signaling can be applied for the treatment of alopecia.

Sirtuin signaling in cellular senescence and aging

  • Lee, Shin-Hae;Lee, Ji-Hyeon;Lee, Hye-Yeon;Min, Kyung-Jin
    • BMB Reports
    • /
    • v.52 no.1
    • /
    • pp.24-34
    • /
    • 2019
  • Sirtuin is an essential factor that delays cellular senescence and extends the organismal lifespan through the regulation of diverse cellular processes. Suppression of cellular senescence by Sirtuin is mainly mediated through delaying the age-related telomere attrition, sustaining genome integrity and promotion of DNA damage repair. In addition, Sirtuin modulates the organismal lifespan by interacting with several lifespan regulating signaling pathways including insulin/IGF-1 signaling pathway, AMP-activated protein kinase, and forkhead box O. Although still controversial, it is suggested that the prolongevity effect of Sirtuin is dependent with the level of and with the tissue expression of Sirtuin. Since Sirtuin is also believed to mediate the prolongevity effect of calorie restriction, activators of Sirtuin have attracted the attention of researchers to develop therapeutics for age-related diseases. Resveratrol, a phytochemical rich in the skin of red grapes and wine, has been actively investigated to activate Sirtuin activity with consequent beneficial effects on aging. This article reviews the evidences and controversies regarding the roles of Sirtuin on cellular senescence and lifespan extension, and summarizes the activators of Sirtuin including Sirtuin-activating compounds and compounds that increase the cellular level of nicotinamide dinucleotide.

Promising Pharmacological Directions in the World of Lysophosphatidic Acid Signaling

  • Stoddard, Nicole C.;Chun, Jerold
    • Biomolecules & Therapeutics
    • /
    • v.23 no.1
    • /
    • pp.1-11
    • /
    • 2015
  • Lysophosphatidic acid (LPA) is a signaling lipid that binds to six known lysophosphatidic acid receptors (LPARs), named $LPA_1-LPA_6$. These receptors initiate signaling cascades relevant to development, maintenance, and healing processes throughout the body. The diversity and specificity of LPA signaling, especially in relation to cancer and autoimmune disorders, makes LPA receptor modulation an attractive target for drug development. Several LPAR-specific analogues and small molecules have been synthesized and are efficacious in attenuating pathology in disease models. To date, at least three compounds have passed phase I and phase II clinical trials for idiopathic pulmonary fibrosis and systemic sclerosis. This review focuses on the promising therapeutic directions emerging in LPA signaling toward ameliorating several diseases, including cancer, fibrosis, arthritis, hydrocephalus, and traumatic injury.

Expression patterns of Rho-associated protein kinase signaling pathway-related genes in mouse submandibular glands

  • Kim, Ki-Chul;Roh, Sangho
    • International Journal of Oral Biology
    • /
    • v.46 no.2
    • /
    • pp.81-84
    • /
    • 2021
  • Salivary glands are exocrine glands that secrete saliva into the oral cavity, and secreted saliva plays essential roles in oral health. Therefore, maintaining the salivary glands in an intact state is required for proper production and secretion of saliva. To investigate a specific signaling pathway that might affect the maintenance of mouse submandibular gland (SMGs), RNA sequencing was performed. In SMGs, downregulated expression patterns of Rho-associated protein kinase (ROCK) signaling pathway-related genes, including Rhoa, Rhob, Rhoc, Rock1, and Rock2, were observed. Gene expression profiling analyses of these genes indicate that the ROCK signaling pathway is a potential signal for SMG maintenance.