DOI QR코드

DOI QR Code

Expression patterns of Rho-associated protein kinase signaling pathway-related genes in mouse submandibular glands

  • Kim, Ki-Chul (Cellular Reprogramming and Embryo Biotechnology Laboratory, Dental Research Institute, Seoul National University School of Dentistry) ;
  • Roh, Sangho (Cellular Reprogramming and Embryo Biotechnology Laboratory, Dental Research Institute, Seoul National University School of Dentistry)
  • Received : 2021.05.21
  • Accepted : 2021.06.16
  • Published : 2021.06.30

Abstract

Salivary glands are exocrine glands that secrete saliva into the oral cavity, and secreted saliva plays essential roles in oral health. Therefore, maintaining the salivary glands in an intact state is required for proper production and secretion of saliva. To investigate a specific signaling pathway that might affect the maintenance of mouse submandibular gland (SMGs), RNA sequencing was performed. In SMGs, downregulated expression patterns of Rho-associated protein kinase (ROCK) signaling pathway-related genes, including Rhoa, Rhob, Rhoc, Rock1, and Rock2, were observed. Gene expression profiling analyses of these genes indicate that the ROCK signaling pathway is a potential signal for SMG maintenance.

Keywords

Acknowledgement

This work was supported by a grant from the National Research Foundation of Korea (NRF-2020R1F1A1070433).

References

  1. Napenas JJ, Brennan MT, Fox PC. Diagnosis and treatment of xerostomia (dry mouth). Odontology 2009;97:76-83. doi: 10.1007/s10266-008-0099-7.
  2. Sui Y, Zhang S, Li Y, Zhang X, Hu W, Feng Y, Xiong J, Zhang Y, Wei S. Generation of functional salivary gland tissue from human submandibular gland stem/progenitor cells. Stem Cell Res Ther 2020;11:127. doi: 10.1186/s13287-020-01628-4.
  3. Jensen SB, Pedersen AM, Reibel J, Nauntofte B. Xerostomia and hypofunction of the salivary glands in cancer therapy. Support Care Cancer 2003;11:207-25. doi: 10.1007/s00520-002-0407-7.
  4. Amerongen AV, Veerman EC. Saliva--the defender of the oral cavity. Oral Dis 2002;8:12-22. doi: 10.1034/j.1601-0825.2002.1o816.x.
  5. Martinez-Madrigal F, Micheau C. Histology of the major salivary glands. Am J Surg Pathol 1989;13:879-99. doi: 10.1097/00000478-198910000-00008.
  6. Mattingly A, Finley JK, Knox SM. Salivary gland development and disease. Wiley Interdiscip Rev Dev Biol 2015;4:573-90. doi: 10.1002/wdev.194.
  7. Vissink A, Mitchell JB, Baum BJ, Limesand KH, Jensen SB, Fox PC, Elting LS, Langendijk JA, Coppes RP, Reyland ME. Clinical management of salivary gland hypofunction and xerostomia in head-and-neck cancer patients: successes and barriers. Int J Radiat Oncol Biol Phys 2010;78:983-91. doi: 10.1016/j.ijrobp.2010.06.052.
  8. Hall EJ, Giaccia AJ. Radiobiology for the radiologist. 6th ed. Philadelphia: Lippincott Williams & Wilkins; 2006.
  9. Aure MH, Konieczny SF, Ovitt CE. Salivary gland homeostasis is maintained through acinar cell self-duplication. Dev Cell 2015;33:231-7. doi: 10.1016/j.devcel.2015.02.013.
  10. Albersen M, Shindel AW, Mwamukonda KB, Lue TF. The future is today: emerging drugs for the treatment of erectile dysfunction. Expert Opin Emerg Drugs 2010;15:467-80. doi: 10.1517/14728214.2010.480973.
  11. Komers R, Oyama TT, Beard DR, Tikellis C, Xu B, Lotspeich DF, Anderson S. Rho kinase inhibition protects kidneys from diabetic nephropathy without reducing blood pressure. Kidney Int 2011;79:432-42. doi: 10.1038/ki.2010.428.
  12. Olson MF. Applications for ROCK kinase inhibition. Curr Opin Cell Biol 2008;20:242-8. doi: 10.1016/j.ceb.2008.01.002.
  13. Rath N, Olson MF. Rho-associated kinases in tumorigenesis: re-considering ROCK inhibition for cancer therapy. EMBO Rep 2012;13:900-8. doi: 10.1038/embor.2012.127.
  14. Schaafsma D, Gosens R, Zaagsma J, Halayko AJ, Meurs H. Rho kinase inhibitors: a novel therapeutical intervention in asthma? Eur J Pharmacol 2008;585:398-406. doi: 10.1016/j.ejphar.2008.01.056.
  15. Shiratsuchi H, Shimizu O, Saito T, Mashimo T, Yonehara Y. Immunohistological study of small Rho GTPases and β-catenin during regeneration of the rat submandibular gland. J Mol Histol 2012;43:751-9. doi: 10.1007/s10735-012-9437-8.
  16. Koslow M, O'Keefe KJ, Hosseini ZF, Nelson DA, Larsen M. ROCK inhibitor increases proacinar cells in adult salivary gland organoids. Stem Cell Res 2019;41:101608. doi: 10.1016/j.scr.2019.101608.
  17. Lee J, Park S, Roh S. Y-27632, a ROCK inhibitor, delays senescence of putative murine salivary gland stem cells in culture. Arch Oral Biol 2015;60:875-82. doi: 10.1016/j.archoralbio.2015.03.003.
  18. Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, HuertaCepas J, Simonovic M, Doncheva NT, Morris JH, Bork P, Jensen LJ, Mering CV. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res 2019;47(D1):D607-13. doi: 10.1093/nar/gky1131.
  19. Etienne-Manneville S, Hall A. Rho GTPases in cell biology. Nature 2002;420:629-35. doi: 10.1038/nature01148.
  20. Pertz O. Spatio-temporal Rho GTPase signaling - where are we now? J Cell Sci 2010;123(Pt 11):1841-50. doi: 10.1242/jcs.064345.
  21. Feng Y, LoGrasso PV, Defert O, Li R. Rho kinase (ROCK) inhibitors and their therapeutic potential. J Med Chem 2016;59: 2269-300. doi: 10.1021/acs.jmedchem.5b00683.
  22. Guilluy C, Eddahibi S, Agard C, Guignabert C, Izikki M, Tu L, Savale L, Humbert M, Fadel E, Adnot S, Loirand G, Pacaud P. RhoA and Rho kinase activation in human pulmonary hypertension: role of 5-HT signaling. Am J Respir Crit Care Med 2009;179:1151-8. doi: 10.1164/rccm.200805-691OC.
  23. Nagai Y, Matoba K, Kawanami D, Takeda Y, Akamine T, Ishizawa S, Kanazawa Y, Yokota T, Utsunomiya K, Nishimura R. ROCK2 regulates TGF-β-induced expression of CTGF and profibrotic genes via NF-κB and cytoskeleton dynamics in mesangial cells. Am J Physiol Renal Physiol 2019;317:F839-51. doi: 10.1152/ajprenal.00596.2018.