DOI QR코드

DOI QR Code

Cell Death and Stress Signaling in Glycogen Storage Disease Type I

  • Kim, So Youn (Center for Cell Signaling and Drug Discovery Research (National Core Research Center), Ewha Womans University) ;
  • Bae, Yun Soo (Center for Cell Signaling and Drug Discovery Research (National Core Research Center), Ewha Womans University)
  • Received : 2009.08.17
  • Accepted : 2009.08.19
  • Published : 2009.09.30

Abstract

Cell death has been traditionally classified in apoptosis and necrosis. Apoptosis, known as programmed cell death, is an active form of cell death mechanism that is tightly regulated by multiple cellular signaling pathways and requires ATP for its appropriate process. Apoptotic death plays essential roles for successful development and maintenance of normal cellular homeostasis in mammalian. In contrast to apoptosis, necrosis is classically considered as a passive cell death process that occurs rather by accident in disastrous conditions, is not required for energy and eventually induces inflammation. Regardless of different characteristics between apoptosis and necrosis, it has been well defined that both are responsible for a wide range of human diseases. Glycogen storage disease type I (GSD-I) is a kind of human genetic disorders and is caused by the deficiency of a microsomal protein, glucose-6-phosphatase-${\alpha}$ ($G6Pase-{\alpha}$) or glucose-6-phosphate transporter (G6PT) responsible for glucose homeostasis, leading to GSD-Ia or GSD-Ib, respectively. This review summarizes cell deaths in GSD-I and mostly focuses on current knowledge of the neutrophil apoptosis in GSD-Ib based upon ER stress and redox signaling.

Keywords

Acknowledgement

Supported by : Korea Research Foundation, Korea Science and Engineering Foundation, Ewha Womans University

References

  1. Abo, A., Boyhan, A., West, I., Thrasher, A.J., and Segal, A.W. (1992). Reconstitution of neutrophil NADPH oxidase activity in the cell-free system by four components: p67-phox, p47-phox, p21rac1, and cytochrome b-245. J. Biol. Chem. 267, 16767-16770
  2. Akahoshi, T., Nagaoka, T., Namai, R., Sekiyama, N., and Kondo, H. (1997). Prevention of neutrophil apoptosis by monosodium urate crystals. Rheumatol. Int. 16, 231-235 https://doi.org/10.1007/BF01375654
  3. Akgul, C., Moulding, D.A., and Edwards, S.W. (2001). Molecular control of neutrophil apoptosis. FEBS Lett. 487, 318-322 https://doi.org/10.1016/S0014-5793(00)02324-3
  4. Akiyama, H., Barger, S., Barnum, S., Bradt, B., Bauer, J., Cole, G.M., Cooper, N.R., Eikelenboom, P., Emmerling, M., Fiebich, B.L., et al. (2000). Inflammation and Alzheimer's disease. Neurobiol. Aging 21, 383-421 https://doi.org/10.1016/S0197-4580(00)00124-X
  5. Babior, B.M. (1984). Oxidants from phagocytes: agents of defenseand destruction. Blood 64, 959-966
  6. Babior, B.M. (1999). NADPH oxidase: an update. Blood 93, 1464-1476
  7. Bae, Y.S., Lee, J.H., Choi, S.H., Kim, S., Almazan, F., Witztum, J.L., and Miller, Y.I. (2009). Macrophages generate reactive oxygen species in response to minimally oxidized low-density lipoprotein:toll-like receptor 4-and spleen tyrosine kinase-dependent activation of NADPH oxidase 2. Circ. Res. 104, 210-218 https://doi.org/10.1161/CIRCRESAHA.108.181040
  8. Bedard, K., and Krause, K.H., (2007). The NOX family of ROSgenerating NADPH oxidases: physiology and pathophysiology. Physiol. Rev. 87, 245-313 https://doi.org/10.1152/physrev.00044.2005
  9. Borthwick, N.J., Wickremasinghe, R.G., Lewin, J., Fairbanks, L.D., and Bofill, M. (1999). Activation-associated necrosis in human immunodeficiency virus infection, J. Infect. Dis. 179, 352-360 https://doi.org/10.1086/314594
  10. Chakravarthi, S., Jessop, C.E., and Bulleid, N.J., (2006). The role of glutathione in disulphide bond formation and endoplasmicreticulum-generated oxidative stress. EMBO Rep. 7, 271-275 https://doi.org/10.1038/sj.embor.7400645
  11. Chen, Y.T., Cornblath, M., and Sidbury, J.B. (1984). Cornstarch therapy in type I glycogen-storage disease. N. Engl. J. Med. 310, 171-175 https://doi.org/10.1056/NEJM198401193100306
  12. Chen, Y.T., Scheinman, J.I., Park, H.K., Coleman, R.A., and Roe, C.R. (1990). Amelioration ofproximal renal tubular dysfunction in type I glycogen storage disease with dietary therapy. N. Engl. J. Med. 323, 590-593 https://doi.org/10.1056/NEJM199008303230907
  13. Chen, Y.T., Bazarre, C.H., Lee, M.M., Sidbury, J.B., and Coleman, R.A. (1993). Type I glycogen storage disease: nine years ofmanagement with cornstarch. Eur. J. Pediatr. 152, S56-S59 https://doi.org/10.1007/BF02072090
  14. Chen, L.-Y., Lin, B., Pan, C.-J., Hiraiwa, H., and Chou, J.Y. (2000). Structural requirements for the stability and microsomal transport activity of the human glucose-6-phosphate transporter. J. Biol. Chem. 275, 34280-34286 https://doi.org/10.1074/jbc.M006439200
  15. Chen, Y.T. (2001). Glycogen storage diseases. In The Metabolic and Molecular Bases of Inherited Disease, C.R., Scriver, A.L., Beaudet, W.S., Sly, D., Valle, B., Childs, K.W., Kinzler, and B., Vogelstein, eds. (New York: McGraw-Hill), pp.1521-1551
  16. Chen, L.-Y., Pan, C.-J., Shieh, J.-J., and Chou, J.Y. (2002). Structure-fun ction analysis of the glucose-6-phosphate transporter deficient in glycogen storage disease type Ib. Hum. Mol. Genet. 11, 3199-3207 https://doi.org/10.1093/hmg/11.25.3199
  17. Cheung, Y.Y., Kim, S.Y., Yiu, W.H., Pan, C.J., Jun, H.S., Ruef, R.A., Lee, E.J., Westphal, H., Mansfield, B.C., and Chou, J.Y. (2007). Impaired neutrophil activity and increased susceptibility to bacterial infection in mice lacking glucose-6-phosphatase-$\beta$. J. Clin. Invest. 117, 784-793 https://doi.org/10.1172/JCI30443
  18. Chitnis, D., Dickerson, C., Munster, A.M., and Winchurch, R.A. (1996). Inhibition of apoptosis in polymorphonuclear neutrophils from burn patients. J. Leukoc. Biol. 59, 835-839 https://doi.org/10.1002/jlb.59.6.835
  19. Chou, J.Y., and Mansfield, B.C. (1999). Molecular genetics of type 1 glycogen storage diseases. Trend Endocrinol. Metab. 10, 104-113 https://doi.org/10.1016/S1043-2760(98)00123-4
  20. Chou, J.Y., and Mansfield, B.C. (2003). Glucose-6-phosphate transporter: the key to glycogen storage disease type Ib. In Membrane Transporter Diseases, S., Broer, and C.A., Wagner, eds. (New York : Kluwer Academic/Plenum Publishers), pp.191-205
  21. Chou, J.Y., Matern, D., Mansfield, B.C., and Chen, Y.-T. (2002). Type I glycogen storage diseases: disorders of the glucose-6-phosphatase complex. Curr. Mol. Med. 2, 121-143 https://doi.org/10.2174/1566524024605798
  22. Clarke, M.C., Figg, N., Maguire, J.J., Davenport, A.P., Goddard, M., Littlewood, T.D., and Bennett, M.R. (2006). Apoptosis of vascular smooth muscle cells induces features of plaque vulnerability in atherosclerosis. Nat. Med. 12, 1075-1080 https://doi.org/10.1038/nm1459
  23. Clarke, M.C., Littlewood, T.D., Figg, N., Maguire, J.J., Davenport, A.P., Goddard, M., and Bennett, M.R. (2008). Chronic apoptosis of vascular smooth muscle cells accelerates atherosclerosis and promotes calcification and medial degeneration. Circ. Res. 102, 1529-1538 https://doi.org/10.1161/CIRCRESAHA.108.175976
  24. Coultas, L., and Strasser, A. (2003). The role of the Bcl-2 protein family in cancer. Semin. Cancer Biol. 13, 115-123 https://doi.org/10.1016/S1044-579X(02)00129-3
  25. Coxon, A., Rieu, P., Barkalow, F.J., Askari S., Sharpe A.H., von. Adrian, U.H., Arnaout, M.A. and Mayadas, T.N. (1996). A novel role for the b2 integrin CD11b/ CD18 in neutrophil apoptosis: a homeostatic mechanism in inflammation. Immunity 5, 653-666 https://doi.org/10.1016/S1074-7613(00)80278-2
  26. Daublin, G., Schwahn, B., and Wendel, U. (2002). Type I glycogen storage disease: favorable outcome on a strict management regimen avoiding increased lactate production during childhood and adolescence. Eur. J. Pediatr. 161, S40-S45 https://doi.org/10.1007/BF02679992
  27. Davis, R.L., Shrimpton, A.E., Holohan, P.D., Bradshaw, C., Feiglin, D., Collins, G.H., Sonderegger, P., Kinter, J., Becker, L.M., Lacbawan, F., et al. (1999). Familial dementia caused by polymerization of mutant neuroserpin. Nature 401, 376-379
  28. Deveraux, Q.L., and Reed, J.C. (1999). IAP family proteins - suppressors of apoptosis. Genes Dev. 13, 239-252 https://doi.org/10.1101/gad.13.3.239
  29. Dieckgraefe, B.K., Korzenik, J.R., Husain, A., and Dieruf, L. (2002). Association of glycogen storage disease 1b and Crohn disease: results of a North American survey. Eur. J. Pediatr. 161, S88-S92 https://doi.org/10.1007/BF02680002
  30. Edinger, A.L., and Thompson, C.B. (2004). Death by design: apoptosis, necrosis and autophagy. Curr. Opin. Cell Biol. 16, 663-669 https://doi.org/10.1016/j.ceb.2004.09.011
  31. El-Benna, J., Dang, P.M., and Gougerot-Pocidalo, M.A. (2008). Priming of the neutrophil NADPH oxidase activation: role of p47phox phosphorylation and NOX2 mobilization to the plasma membrane. Semin. Immunopathol. 30, 279-289 https://doi.org/10.1007/s00281-008-0118-3
  32. Ertel, W., Keel, M., Infanger, M., Ungethum, U., Steckholzer, U., and Trentz, O. (1998). Circulating mediators in serum of injured patients with septic complications inhibit neutrophil apoptosis through up-regulation of protein-tyrosine phosphorylation. J. Trauma. 44, 767-776 https://doi.org/10.1097/00005373-199805000-00005
  33. Fadeel, B., and Orrenius, S. (2005). Apoptosis: a basic biological phenomenon with wide-ranging implications in human disease. J. Intern. Med. 258, 479-517 https://doi.org/10.1111/j.1365-2796.2005.01570.x
  34. Forman, H.J., and Torres, M., (2001). Redox signaling in macrophages. Mol. Aspects Med. 22, 189-216 https://doi.org/10.1016/S0098-2997(01)00010-3
  35. Fruehauf, J.P., and Meyskens, F.L. Jr., (2007). Reactive oxygen species: a breath of life or death? Clin. Cancer Res. 13, 789-794 https://doi.org/10.1158/1078-0432.CCR-06-2082
  36. Gao, Z., Tian, Y., Wang, J., Yin, Q., Wu, H., Li, Y.M., and Jiang, X. (2007). A dimeric Smac/diablo peptide directly relieves caspase-3 inhibition by XIAP. Dynamic and cooperative regulation of XIAP by Smac/Diablo. J. Biol. Chem. 282, 30718-30727 https://doi.org/10.1074/jbc.M705258200
  37. Garlichs, C.D., Eskafi, S., Cicha, I., Schmeisser, A., Walzog, B., Raaz, D., Stumpf, C., Yilmaz, A., Bremer, J., Ludwig, J., et al. (2004). Delay of neutrophil apoptosis in acute coronary syndromes. J. Leukoc. Biol. 75, 828-835 https://doi.org/10.1189/jlb.0703358
  38. Garty, B., Douglas, S., and Danon, Y. L. (1996). Immune deficiency in glycogen storage disease type 1b. Isr. J. Med. Sci. 32, 1276-1281
  39. Gitzelmann, R., and Bosshard, N.U. (1993). Defective neutrophil and monocyte functions in glycogen storage disease type Ib: a literature review. Eur. J. Pediatr. 152, S33-S38 https://doi.org/10.1007/BF02072085
  40. Gorlach, A., Klappa, P., and Kietzmann, T. (2006). The endoplasmic reticulum: folding, calcium homeostasis, signaling, and redox control. Antioxid. Redox Signal. 8, 1391-1418 https://doi.org/10.1089/ars.2006.8.1391
  41. Green, D.R. (2005). Apoptotic pathways: ten minutes to dead. Cell 121, 671-674 https://doi.org/10.1016/j.cell.2005.05.019
  42. Greene, H.L., Slonim, AE., O'Neill, J.A., and Burr, I.M. (1976). Continuous nocturnal intragastric feeding for management of type 1 glycogen-storage disease. N. Engl. J. Med. 294, 423-425 https://doi.org/10.1056/NEJM197602192940805
  43. Hallett, M.B., and Lloyds, D.L. (1995). Neutrophil priming: the cellular signals that say ‘amber’ but not ‘green’. Immunol. Today 16, 264-268 https://doi.org/10.1016/0167-5699(95)80178-2
  44. Hampton, M.B., Kettle, A.J., and Winterbourn, C.C. (1998). Inside the neutrophil phagosome: oxidants, myeloperoxidase, and bacterial killing. Blood 92, 3007-3017
  45. Haynes, C.M., Titus, E.A., and Cooper, A.A. (2004). Degradation of misfolded proteins prevents ER-derived oxidative stress and cell death. Mol. Cell 15, 767-776 https://doi.org/10.1016/j.molcel.2004.08.025
  46. Hegde, R., Srinivasula, S.M., Zhang, Z., Wassell, R., Mukattash, R., Cilenti, L., DuBois, G., Lazebnik, Y., Zervos, A.S., Fernandes-Alnemri, T., et al. (2002). Identification of Omi/HtrA2 as a mitochondrial apoptotic serine protease that disrupts inhibitor of apoptosis protein-caspase interaction. J. Biol. Chem. 277, 432-438 https://doi.org/10.1074/jbc.M109721200
  47. Hegde, R., Srinivasula, S.M., Datta, P., Madesh, M., Wassell, R., Zhang, Z., Cheong, N., Nejmeh, J., Fernandes-Alnemri, T., Hoshino, S., et al. (2003). The polypeptide chain-releasing factor GSPT1/eRF3 is proteolytically processed into an IAP-binding protein. J. Biol. Chem. 278, 38699-38706 https://doi.org/10.1074/jbc.M303179200
  48. Hewitt, K.N., Walker, E.A., and Stewart, P.M. (2005). Minireview: hexose-6-phosphate dehydrogenase and redox control of 11 $\beta$-hydroxysteroid dehydrogenase type 1 activity. Endocrinology 146, 2539-2543 https://doi.org/10.1210/en.2005-0117
  49. Hiraiwa, H., Pan, C.-J., Lin, B., Moses, S.W., and Chou, J.Y. (1999). Inactivation of the glucose-6-phosphate transporter causes glycogen storage disease type 1b. J. Biol. Chem. 274, 5532-5536 https://doi.org/10.1074/jbc.274.9.5532
  50. Huang, J., and Brumell, J.H. (2009). NADPH oxidases contribute to autophagy regulation. Autophagy 5, 887-889 https://doi.org/10.4161/auto.9125
  51. Hultqvist, M., Olsson, L.M., Gelderman, K.A., and Holmdahl, R. (2009). The protective role of ROS in autoimmune disease. Trends Immunol. 30, 201-208 https://doi.org/10.1016/j.it.2009.03.004
  52. Ina, K., Kusugami, K., Hosokawa, T., Imada, A., Shimizu, T., Yamaguchi, T., Ohsuga, M., Kyokane, K., Sakai, T., Nishio, Y., et al. (1999). Increased mucosal production of granulocyte colonystimulating factor is related to a delay in neutrophil apoptosis in Inflammatory Bowel disease. J. Gastroenterol. Hepatol. 14, 46-53 https://doi.org/10.1046/j.1440-1746.1999.01807.x
  53. Inoue, M., Sato, E.F., Nishikawa, M., Park, A.M., Kira, Y., Imada, I. and Utsumi, K. (2003). Mitochondrial generation of reactive oxygen species and its role in aerobic life. Curr. Med. Chem. 10, 2495-505 https://doi.org/10.2174/0929867033456477
  54. Jimenez, M.F., Watson, R.W., Parodo, J., Evans, D., Foster, D., Steinberg, M., Rotstein, O.D., and Marshall, J.C. (1997). Dysregulated expression of neutrophil apoptosis in the systemic inflammatory response syndrome. Arch. Surg. 132, 1263-1270 https://doi.org/10.1001/archsurg.1997.01430360009002
  55. Joshi-Barve, S., Barve, S.S., Amancherla, K., Gobejishvili, L., Hill, D., Cave, M., Hote, P., and McClain, C.J. (2007). Palmitic acid induces production of proinflammatory cytokine interleukin-8 from hepatocytes. Hepatology 46, 823-830 https://doi.org/10.1002/hep.21752
  56. Kadowaki, M., Karim, M.R., Carpi, A., and Miotto, G. (2006). Nutrient control of macroautophagy in mammalian cells. Mol. Aspects Med. 27, 426-443 https://doi.org/10.1016/j.mam.2006.08.010
  57. Kalamidas, S.A., and Kotoulas, O.B. (1999). The degradation of glycogen in the lysosomes of newborn rat hepatocytes: glycogen-,maltose- and isomaltose-hydrolyzing acid alpha glucosidase activities in liver. Histol. Histopathol. 14, 23-30
  58. Kaplowitz, N. (2000). Mechanisms of liver cell injury. J. Hepatol. 32, 39-47
  59. Kasahara, Y., Iwai, K., Yachie, A., Ohta, K., Konno, A., Seki, H. Miyawaki, T., and Taniguchi, N. (1997). Involvement of reactive oxygen intermediates in spontaneous and CD95 (Fas/APO-1)-mediated apoptosis of neutrophils. Blood 89, 1748-1753
  60. Kaufman, R.J., Scheuner, D., Schroder, M., Shen, X., Lee, K., Liu, C.Y., and Arnold, S.M. (2002). The unfolded protein response in nutrient sensing and differentiation. Nat. Rev. Mol. Cell Biol. 3, 411-421 https://doi.org/10.1038/nrm829
  61. Keel, M., Ungethum, U., Steckholzer, U., Niederer, E., Hartung, T., Trentz, O., and Ertel, W. (1997). Interleukin-10 counterregulates proinflammatory cytokine-induced inhibition of neutrophil apoptosis during severe sepsis. Blood 90, 3356-3363
  62. Kelekar, A., and Thompson, C.B. (1998). Bcl-2-family proteins: the role of the BH3 domain in apoptosis. Trends Cell. Biol. 8, 324-330 https://doi.org/10.1016/S0962-8924(98)01321-X
  63. Kilpatrick, L., Garty, B.Z., Lundquist, K.F., Hunter, K., Stanley, C.A., Baker, L., Douglas, S.D., and Korchak, H.M. (1990). Impaired metabolic function and signaling defects in phagocytic cells in glycogen storage disease type 1b. J. Clin. Invest. 86, 196-202 https://doi.org/10.1172/JCI114684
  64. Kim, J., and Klionsky, D.J. (2000). Autophagy, cytoplasm-tovacuole targeting pathway, and pexophagy in yeast and mammalian cells. Annu. Rev. Biochem. 69, 303-342 https://doi.org/10.1146/annurev.biochem.69.1.303
  65. Kim, S.Y., Nguyen, A.D., Gao, J.L., Murphy, P.M., Mansfield, B.C., and Chou, J.Y. (2006). Bone marrow-derived cells require a functional glucose 6-phosphate transporter for normal myeloid functions. J. Biol. Chem. 281, 28794-28801 https://doi.org/10.1074/jbc.M604964200
  66. Kim, S.Y., Chen, L.Y., Yiu, W.H., Weinstein, D.A., and Chou, J.Y. (2007). Neutrophilia and elevated serum cytokines are implicated in glycogen storage disease type Ia. FEBS Lett. 581, 3833-3838 https://doi.org/10.1016/j.febslet.2007.07.013
  67. Kim, S.Y., Jun, H.S., Mead, P.A., Mansfield, B.C., and Chou, J.Y. (2008a). Neutrophil stress and apoptosis underlie myeloid dysfunction in glycogen storage disease type Ib. Blood 111, 5704-5711 https://doi.org/10.1182/blood-2007-12-129114
  68. Kim, S.Y., Weinstein, D.A., Starost, M.F., Mansfield, B.C., and Chou, J.Y. (2008b). Necrotic foci, elevated chemokines and infiltrating neutrophils in the liver of glycogen storage disease type Ia. J. Hepatol. 48, 479-485 https://doi.org/10.1016/j.jhep.2007.11.014
  69. Klionsky, D.J. (2004). Autophagy. (Georgetown, TX: Landes Biosciences), pp. 1-303
  70. Korchak, H.M., Garty, B.Z., Stanley, C.A., Baker, L., Douglas, S.D., and Kilpatrick. L. (1993). Impairment of calcium mobilization in phagocytic cells in glycogen storage disease type 1b. Eur. J. Pediatr. 152, S39-S43 https://doi.org/10.1007/BF02072086
  71. Kotoulas, O.B., and Phillips, M.J. (1971). Fine structural aspects of the mobilization of hepatic glycogen. I. Acceleration of glycogen breakdown. Am. J. Pathol. 63, 1-7
  72. Kotoulas, O.B., Kalamidas, S.A., Miles, P., and Hann, A.C., (2003). An electron microscopic and biochemical study of the effects of propranolol on the glycogen autophagy in newborn rat hepatocytes. Histol. Histopathol. 18, 811-818
  73. Kotoulas, O.B., Kalamidas, S.A., and Kondomerkos, D.J., (2004). Glycogen autophagy. Microsc. Res. Tech. 64, 10-20 https://doi.org/10.1002/jemt.20046
  74. Kotoulas, O.B., Kalamidas, S.A., and Kondomerkos, D.J. (2006). Glycogen autophagy in glucose homeostasis. Pathol. Res. Pract. 202, 631-638 https://doi.org/10.1016/j.prp.2006.04.001
  75. Kuijpers, T.W., Maianski, N.A., Tool, A.T., Smit, G.P., Rake, J.P.,Roos, D., and Visser, G. (2003). Apoptotic neutrophils in the circulation of patients with glycogen storage disease type 1b (GSD1b). Blood 101, 5021-5024 https://doi.org/10.1182/blood-2002-10-3128
  76. Kuma, A., Hatano, M., Matsui, M., Yamamoto, A., Nakaya, H., Yoshimori, T., Ohsumi, Y., Tokuhisa, T., and Mizushima, N. (2004). The role of autophagy during the early neonatal starvation period. Nature 432, 1032-1036 https://doi.org/10.1038/nature03029
  77. Lambeth, J.D., Krause, K.H., and Clark, R.A. (2008). NOX enzymes as novel targets for drug development. Semin Immunopathol. 30, 339-363 https://doi.org/10.1007/s00281-008-0123-6
  78. Lee, A.S. (2001). The glucose-regulated proteins: stress induction and clinical applications. Trends Biochem. Sci. 26, 504-510 https://doi.org/10.1016/S0968-0004(01)01908-9
  79. Lee, A.S. (2005). The ER chaperone and signaling regulator GRP78/BiP as a monitor of endoplasmic reticulum stress. Methods 35, 373-381 https://doi.org/10.1016/j.ymeth.2004.10.010
  80. Lei, K.-J., Shelly, L.L., Pan, C.-J., Sidbury, J.B., and Chou, J.Y. (1993). Mutations in the glucose-6-phosphatase gene that cause glycogen storage disease type 1a. Science 262, 580-583 https://doi.org/10.1126/science.8211187
  81. Lei, K.-J., Pan, C.-J., Shelly, L.L., Liu, J.-L., and Chou, J.Y. (1994)Identification of mutations in the gene for glucose-6-phosphatase, the enzyme deficient in glycogen storage disease type 1a. J. Clin. Invest. 93, 1994-1999 https://doi.org/10.1172/JCI117192
  82. Lei, K.-J., Chen, Y.-T., Chen, H., Wong, L.-J.C., Liu, J.-L., McConkie-Rosell, A., Van Hove, J.L.K., Ou, H.C.-Y., Yeh, N.J., Pan, L.Y., et al. (1995a). Genetic basis of glycogen storage disease type 1a: prevalent mutations at the glucose-6- phosphatase locus. Am. J. Hum. Genet. 57, 766-771
  83. Lei, K-J., Shelly, L.L., Lin, B., Sidbury, J.B., Chen, Y.-T., Nordlie, R.C., and Chou, J.Y. (1995b). Mutations in the glucose-6-phosphatase gene are associated with glycogen storage disease type 1a and 1aSP but not 1b and 1c. J. Clin. Invest. 95, 234-240 https://doi.org/10.1172/JCI117645
  84. Leuzzi, R., Banhegyi, G., Kardon, T., Marcolongo, P., Capecchi, P.L., Burger, H.J., Benedetti, A., and Fulceri, R. (2003). Inhibition of microsomal glucose-6-phosphate transport in human neutrophils results in apoptosis: a potential explanation for neutrophil dysfunction in glycogen storage disease type 1b. Blood 101, 381-387 https://doi.org/10.1182/blood-2002-11-3426
  85. Levine, B., and Kroemer, G. (2008). Autophagy in the pathogenesis of disease. Cell 132, 27-42 https://doi.org/10.1016/j.cell.2007.12.018
  86. Lin, B., Annabi, B., Hiraiwa, H., Pan, C.J., and Chou, J.Y. (1998). Cloning and characterization of cDNAs encoding a candidate glycogen storage disease type 1b protein in rodents. J. Biol. Chem. 273, 31656-31660 https://doi.org/10.1074/jbc.273.48.31656
  87. Lindholm, D., Wootz, H., and Korhonen, L. (2006). ER stress and neurodegenerative diseases. Cell Death Differ. 13, 385-392 https://doi.org/10.1038/sj.cdd.4401778
  88. Lipson, K.L., Fonseca, S.G., and Urano, F. (2006). Endoplasmic reticulum stress-induced apoptosis and auto-immunity in diabetes. Curr. Mol. Med. 6, 71-77 https://doi.org/10.2174/156652406775574613
  89. Lundqvist-Gustafsson, H., and Bengtsson, T. (1999). Activation of the granule pool of the NADPH oxidase accelerates apoptosis in human neutrophils. J. Leukoc. Biol. 65, 196-204 https://doi.org/10.1002/jlb.65.2.196
  90. Luo, H.R., and Loison, F. (2008). Constitutive neutrophil apoptosis: mechanisms and regulation. Am. J. Hematol. 83, 288-295 https://doi.org/10.1002/ajh.21078
  91. Maianski, N.A., Roos, D., and Kuijpers, T.W. (2003). Tumor necrosis factor alpha induces a caspase-independent death pathway in human neutrophils. Blood 101, 1987-1995 https://doi.org/10.1182/blood-2002-02-0522
  92. Maianski, N.A., Maianski, A.N., Kuijpers, T.W., and Roos, D. (2004a). Apoptosis of neutrophils. Acta Haematol. 111, 56-66 https://doi.org/10.1159/000074486
  93. Maianski, N.A., Geissler, J., Srinivasula, S.M., Alnemri, E.S., Roos, D., and Kuijpers, T.W. (2004b). Functional characterization of mitochondria in neutrophils: a role restricted to apoptosis. Cell Death. Differ. 11, 143-153 https://doi.org/10.1038/sj.cdd.4401320
  94. Malhi, H., Gores, G.J., and Lemasters, J.J. (2006). Apoptosis and necrosis in the liver: a tale of two deaths? Hepatology 43, S31-44 https://doi.org/10.1002/hep.21062
  95. Mandl, J., Meszaros, T., Banhegyi, G., Hunyady, L., and Csala, M (2009). Endoplasmic reticulum: nutrient sensor in physiology and pathology. Trends Endocrinol. Metab. 20, 194-201 https://doi.org/10.1016/j.tem.2009.01.003
  96. McCullough, A.J. (2006). Pathophysiology of nonalcoholic steatohepatitis. J. Clin. Gastroenterol 40, S17-S29
  97. Melley, D.D., Evans, T.W., and Quinlan, G.J. (2005). Redox regulation of neutrophil apoptosis and the systemic inflammatory response syndrome. Clin. Sci. 108, 413-424 https://doi.org/10.1042/CS20040228
  98. Michelsen, K.S., Doherty, T.M., Shah, P.K., and Arditi, M. (2004). TLR signaling: an emerging bridge from innate immunity to atherogenesis. J. Immunol. 173, 5901-5907 https://doi.org/10.4049/jimmunol.173.10.5901
  99. Miller, L.K. (1999). An exegesis of IAPs: salvation and surprises from BIR motifs. Trends Cell Biol. 9, 323-328 https://doi.org/10.1016/S0962-8924(99)01609-8
  100. Mizushima, N. Levine, B., Cuervo, A.M., and Klionsky, D.J. (2008). Autophagy fights disease through cellular self-digestion. Nature 451, 1069-1075 https://doi.org/10.1038/nature06639
  101. Mulligan, M.S., Lentsch, A.B., Miyasaka, M., and Ward, P.A. (1998). Cytokine and adhesion molecule requirements for neutrophil recruitment during glycogen-induced peritonitis. Inflamm. Res. 47, 251-255 https://doi.org/10.1007/s000110050326
  102. Murphy, B.M., O'Neill, A.J., Adrain, C., Watson, R.W., and Martin, S.J. (2003). The apoptosome pathway to caspase activation in primary human neutrophils exhibits dramatically reduced requirements for cytochrome C. J. Exp. Med. 197, 625-632 https://doi.org/10.1084/jem.20021862
  103. Nagata, S., and Golstein, P. (1995). The Fas death factor. Science 267, 1449-1456 https://doi.org/10.1126/science.7533326
  104. Nakagawa, T., Zhu, H., Morishima, N., Li, E., Xu, J., Yankner, B.A., and Yuan, J. (2000). Caspase-12 mediates endoplasmicreticulum-specific apoptosis and cytotoxicity by amyloid-b. Nature 403, 98-103 https://doi.org/10.1038/47513
  105. Newmeyer, D.D., and Ferguson-Miller, S. (2003). Mitochondria: releasing power for life and unleashing the machineries of death. Cell 112, 481-490 https://doi.org/10.1016/S0092-8674(03)00116-8
  106. Nicotera, P., Leist, M., and Manzo, L. (1999) Neuronal cell death: a demise with different shapes. Trends Pharmacol. Sci. 20, 46-51 https://doi.org/10.1016/S0165-6147(99)01304-8
  107. Nordlie, R.C., and Sukalski, K.A. (1985). In The Enzymes of Biological Membranes, A.N., Martonosi, ed. 2nd ed. (New York: Plenum Press), pp. 349-398
  108. Ogata, M., Hino, S., Saito, A., Morikawa, K., Kondo, S., Kanemoto, S., Murakami, T., Taniguchi, M., Tanii, I., Yoshinaga, K., et al. (2006). Autophagy is activated for cell survival after endoplasmic reticulum stress. Mol. Cell. Biol. 26, 9220-9231 https://doi.org/10.1128/MCB.01453-06
  109. Onodera, J., and Ohsumi, Y. (2005). Autophagy is required for maintenance of amino acid levels and protein synthesis under nitrogen starvation. J. Biol. Chem. 280, 31582-31586 https://doi.org/10.1074/jbc.M506736200
  110. Orrenius, S., Gogvadze, V., and Zhivotovsky, B. (2007). Mitochondrial oxidative stress: implications for cell death. Annu. Rev. Pharmacol. Toxicol. 47, 143-183 https://doi.org/10.1146/annurev.pharmtox.47.120505.105122
  111. Ottonello, L., Cutolo, M., Frumento, G., Arduino, N., Bertolotto, M., Mancini, M., Sottofattori, E., and Dallegri, F. (2002). Synovial fluid from patients with rheumatoid arthritis inhibits neutrophil apoptosis: role of adenosine and proinflammatory cytokines. Rheumatology 41, 1249-1260 https://doi.org/10.1093/rheumatology/41.11.1249
  112. Ozcan, U., Cao, Q., Yilmaz, E., Lee, A.H., Iwakoshi, N.N., Ozdelen, E., Tuncman, G., Gorgun, C., Glimcher, L.H., and Hotamisligil, G.S. (2004). Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes. Science. 306 457-461 https://doi.org/10.1126/science.1103160
  113. Pan, C.-J., Lei, K.-J., Chen, H., Ward, J.M., and Chou, J.Y. (1998). Ontogency of the murine glucose-6-phosphatase system. Arch. Biochem. Biophys. 358, 17-24 https://doi.org/10.1006/abbi.1998.0849
  114. Park, H.S., Jung, H.Y., Park, E.Y., Kim, J., Lee, W.J., and Bae, Y.S. (2004). Cutting edge: direct interaction of TLR4 with NAD(P)H oxidase 4 isozyme is essential for lipopolysaccharide-induced production of reactive oxygen species and activation of NFkappa B. J. Immunol. 173, 3589-3593 https://doi.org/10.4049/jimmunol.173.6.3589
  115. Peng, S.L. (2006). Neutrophil apoptosis in autoimmunity. J. Mol. Med. 84, 122-125 https://doi.org/10.1007/s00109-005-0007-3
  116. Perskvist, N., Long, M., Stendahl, O., and Zheng, L. (2002). Mycobacterium tuberculosis promotes apoptosis in human neutrophils by activating caspase-3 and altering expression of Bax/BclxL via an oxygen-dependent pathway. J. Immunol. 168, 6358-6365 https://doi.org/10.4049/jimmunol.168.12.6358
  117. Proskuryakov, S.Y., Konoplyannikov, A.G., and Gabai, V.L. (2003). Necrosis: a specific form of programmed cell death? Exp. Cell. Res. 283, 1-16 https://doi.org/10.1016/S0014-4827(02)00027-7
  118. Quinn, M.T., Mullen, M.L., and Jesaitis, A.J. (1992). Human neutrophil cytochrome b contains multiple hemes. Evidence for heme associated with both subunits J. Biol. Chem. 267, 7303-7309
  119. Rake, J.P., Visser, G., Labrune, P., Leonard, J.V., Ullrich, K., and Smit, G.P. (2002). Glycogen storage disease type I: diagnosis, management, clinical course and outcome. Results of the European study on glycogen storage disease type I (ESGSD I). Eur. J. Pediatr. 161, S20-S34 https://doi.org/10.1007/BF02679990
  120. Ravikumar, B., Vacher, C., Berger, Z., Davies, J.E., Luo, S., Oroz, L.G., Scaravilli, F., Easton, D.F., Duden, R., O'Kane, C.J., et al. (2004). Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease. Nat. Genet. 36, 585-595 https://doi.org/10.1038/ng1362
  121. Rotrosen, D., Yeung, C.L., Leto, T.L., Malech, H.L., and Kwong, C.H. (1992). Cytochrome b558: the flavin-binding component of the phagocyte NADPH oxidase. Science 256, 1459-1462 https://doi.org/10.1126/science.1318579
  122. Salminen, A., and Kaarniranta, K. (2009). Regulation of the aging process by autophagy. Trends Mol. Med. 15, 217-224 https://doi.org/10.1016/j.molmed.2009.03.004
  123. Sanjuan, M.A., Dillon, C.P., Tait, S.W., Moshiach. S., Dorsey, F., Connell, S., Komatsu, M., Tanaka, K., Cleveland, J.L., Withoff, S., et al. (2007). Toll-like receptor signalling in macrophages links the autophagy pathway to phagocytosis. Nature 450, 1253-1257 https://doi.org/10.1038/nature06421
  124. Savill, J., and Fadok, V. (2000). Corpse clearance defines the meaning of cell death. Nature 407, 784-788 https://doi.org/10.1038/35037722
  125. Savill, J.S., Wyllie, A.H., Henson, J.E., Walport, M.J., Henson, P.M., and Haslett, C. (1989). Macrophage phagocytosis of aging neutrophils in inflammation. Programmed cell death in the neutrophil leads to its recognition by macrophages. J. Clin. Invest. 83, 865-875 https://doi.org/10.1172/JCI113970
  126. Schafer, F.Q., and Buettner, G.R. (2001). Redox environment of the cell as viewed through the redox state of the glutathione disulfide/ glutathione couple. Free Radic. Biol. Med. 30, 1191-1212 https://doi.org/10.1016/S0891-5849(01)00480-4
  127. Scheel-Toellner, D., Wang, K.Q., Webb, P.R., Wong, S.H., Craddock, R., Assi, L.K., Salmon, M., and Lord, J.M. (2004). Early events in spontaneous neutrophil apoptosis. Biochem. Soc. Trans. 32, 461-464 https://doi.org/10.1042/BST0320461
  128. Schmid, D., and Munz, C. (2007). Innate and adaptive immunity through autophagy. Immunity 27, 11-21 https://doi.org/10.1016/j.immuni.2007.07.004
  129. Schroder, M., and Kaufman, R.J. (2005). The mammalian unfolded protein response. Annu. Rev. Biochem. 74, 739-789 https://doi.org/10.1146/annurev.biochem.73.011303.074134
  130. Schworer, C.M., Shiffer, K.A., and Mortimore, GE. (1981). Quantitative relationship between autophagy and proteolysis during graded amino acid deprivation in perfused rat liver. J. Biol. Chem. 256, 7652-7658
  131. Scott, F.L., Denault, J.B., Riedl, S.J., Shin, H., Renatus, M., and Salvesen, G.S. (2005). XIAP inhibits caspase-3 and -7 using two binding sites: evolutionarily conserved mechanism of IAPs. EMBO J. 24, 645-655 https://doi.org/10.1038/sj.emboj.7600544
  132. Segal, A.W. (2005). How neutrophils kill microbes. Annu. Rev. Immunol. 23, 197-223 https://doi.org/10.1146/annurev.immunol.23.021704.115653
  133. Sheppard, F.R., Kelher, M.R., Moore, E.E., McLaughlin, N.J., Banerjee, A., and Silliman, C.C. (2005). Structural organization of the neutrophil NADPH oxidase: phosphorylation and translocation during priming and activation. J. Leukoc. Biol. 78, 1025-1042 https://doi.org/10.1189/jlb.0804442
  134. Shintani, T., and Klionsky, D.J. (2004). Autophagy in health and disease: a double-edged sword. Science 306, 990-995 https://doi.org/10.1126/science.1099993
  135. Shiu, R.P., Pouyssegur, J., and Pastan, I. (1977). Glucose depletion accounts for the induction of two transformation-sensitive membrane proteinsin Rous sarcoma virus-transformed chick embryo fibroblasts. Proc. Natl. Acad. Sci. USA 74, 3840-3844 https://doi.org/10.1073/pnas.74.9.3840
  136. Squier, M.K., Sehnert, A.J., and Cohen, J.J. (1995). Apoptosis in leukocytes. J. Leukoc. Biol. 57, 2-10 https://doi.org/10.1002/jlb.57.1.2
  137. Suzuki, Y., Imai, Y., Nakayama, H., Takahashi, K., Takio, K., and Takahashi, R. (2001). A serine protease, HtrA2, is released from the mitochondria and interacts with XIAP, inducing cell death. Mol. Cell 8, 613-621 https://doi.org/10.1016/S1097-2765(01)00341-0
  138. Syntichaki, P., and Tavernarakis, N. (2002). Death by necrosis. Uncontrollable catastrophe, or is there order behind the chaos? EMBO Rep. 3, 604-609 https://doi.org/10.1093/embo-reports/kvf138
  139. Tachibana, Y., Nakamoto, Y., Mukaida, N., and Kaneko, S. (2007). Intrahepatic interleukin-8 production during disease progression of chronic hepatitis C. Cancer Lett. 251, 36-42 https://doi.org/10.1016/j.canlet.2006.10.028
  140. Tanimoto, N., Terasawa, M., Nakamura, M., Kegai, D., Aoshima, N., Kobayashi, Y., and Nagata, K. (2007). Involvement of KC, MIP-2, and MCP-1 in leukocyte infiltration following injection of necrotic cells into the peritoneal cavity. Biochem. Biophys. Res. Commun. 361, 533-536 https://doi.org/10.1016/j.bbrc.2007.07.060
  141. Tenev, T., Zachariou, A., Wilson, R., Ditzel, M., and Meier, P. (2005). IAPs are functionally non-equivalent and regulate effector caspases through distinct mechanisms. Nat. Cell Biol. 7, 70-77 https://doi.org/10.1038/ncb1204
  142. Virgin, H.W., and Levine, B. (2009). Autophagy genes in immunity. Nat. Immunol. 10, 461-470 https://doi.org/10.1038/ni.1726
  143. Visser, G., Rake, J.P, Fernandes, J., Labrune, P., Leonard, J.V., Moses, S., Ullrich, K., and Smit, G.P. (2000). Neutropenia, neutrophil dysfunction, and inflammatory bowel disease in glycogen storage disease type Ib: results of the European study on glycogen storage disease type I. J. Pediatr. 137, 187-191 https://doi.org/10.1067/mpd.2000.105232
  144. Walker, N.I., Harmon, B.V., Gobe, G.C., and Kerr, J.F. (1988). Patterns of cell death. Methods Achiev. Exp. Pathol. 13, 18-54
  145. Walker, E.A., Ahmed, A., Lavery, G.G., Tomlinson, J.W., Kim, S.Y., Cooper, M.S., Ride, J.P., Hughes, B.A., Shackleton, C.H., McKiernan, P., et al. (2007). 11beta-hydroxysteroid dehydrogenase type 1 regulation by intracellular glucose 6-phosphate provides evidence for a novel link between glucose metabolism and hypothalamo-pituitary-adrenal axis function. J. Biol. Chem. 282, 27030-27036 https://doi.org/10.1074/jbc.M704144200
  146. Wang, J.H., Redmond, H.P., Watson, R.W., Duggan, S., McCarthy, J., Barry, M., and Bouchier-Hayes, D. (1996). Mechanisms involved in the induction of human endothelial cell necrosis. Cell. Immunol. 168, 91-99 https://doi.org/10.1006/cimm.1996.0053
  147. Webb, P.R., Wang, K.Q., Scheel-Toellner, D., Pongracz, J., Salmon, M., and Lord, J.M. (2000). Regulation of neutrophil apoptosis: A role for protein kinase C and phosphatidylinositol-3-kinase. Apoptosis 5, 451-458 https://doi.org/10.1023/A:1009601220552
  148. Weisiger, R.A., and Fridovich, I. (1973). Mitochondrial superoxide dismutase. Site of synthesis and intramitochondrial localization. J. Biol. Chem. 248, 4793-4796
  149. Wu, G., Chai, J., Suber, T.L., Wu, J.W., Du, C., Wang, X., and Shi,Y. (2000). Structural basis of IAP recognition by Smac/DIABLO. Nature 408, 1008-1012 https://doi.org/10.1038/35050012
  150. Xie, Z., and Klionsky, D.J. (2007). Autophagosome formation: core machinery and adaptations Nat. Cell Biol. 9, 1102-1109 https://doi.org/10.1038/ncb1007-1102
  151. Yamamoto, A., Taniuchi, S., Tsuji, S., Hasui, M., and Kobayashi, Y. (2002). Role of reactive oxygen species in neutrophil apoptosis following ingestion of heat-killed Staphylococcus aureus. Clin. Exp. Immunol. 129, 479-484 https://doi.org/10.1046/j.1365-2249.2002.01930.x
  152. Yamashita, T., Ishibashi, Y., Nagaoka, I., Kasuya, K., Masuda, K., Warabi, H., and Shiokawa, Y. (1982). Studies of glycogeninduced inflammation of mice. Dynamics of inflammatory responses and influence of antiinflammatory drugs and protease inhibitors. Inflammation 6, 87-101 https://doi.org/10.1007/BF00910722
  153. Yasui, K., and Baba, A. (2006). Therapeutic potential of superoxide dismutase (SOD) for resolution of inflammation. Inflamm. Res. 55, 359-363 https://doi.org/10.1007/s00011-006-5195-y
  154. Youle, R.J., and Strasser, A. (2008). The BCL-2 protein family: opposing activities that mediate cell death. Nat. Rev. Mol. Cell Biol. 9, 47-59 https://doi.org/10.1038/nrm2308
  155. Yu, J., Zhang, L., Hwang, P., Kinzler, K.W., and Vogelstein, B. (2001). PUMA induces the rapid apoptosis of colorectal cancer cells. Mol. Cell 7, 673-682 https://doi.org/10.1016/S1097-2765(01)00213-1
  156. Ziegler, U., and Groscurth, P. (2004). Morphological features of cell death. News Physiol. Sci. 19, 124-128 https://doi.org/10.1152/nips.01519.2004

Cited by

  1. Induction of endoplasmic reticulum stress as a strategy for melanoma therapy: is there a future? vol.1, pp.2, 2014, https://doi.org/10.2217/mmt.14.16
  2. Fenofibrate rapidly decreases hepatic lipid and glycogen storage in neonatal mice with glycogen storage disease type Ia vol.29, pp.2, 2009, https://doi.org/10.1093/hmg/ddz290